907 resultados para chiral chromatography
Resumo:
A palladium(II)-catalyzed hydroxycyclization-carbonylation-lactonization sequence with appropriate pent-4-ene-1,3-diols provides efficient access to the bicyclic gamma -lactones, 5-n-butyl- and 5-n-hexyltetrahydrofuro-[3,2-b]furan-2(3H)-ones (3) and (4), respectively, in both racemic and enantiomeric forms. Some of the substrate pent-4-ene-1,3-diols of high enantiomeric excess (ee) have been derived from racemic terminal epoxides by hydrolytic kinetic resolution (HKR) using cobalt (III)-salen complexes. (9Z,12R)-(+)-Ricinoleic acid also serves as a chiral pool source of other pent-4-ene-1,3-diols. These syntheses and enantioselective gas chromatography confirm the structures and absolute stereochemistry of the lactones in some species of parasitic wasps (Hymenoptera: Braconidae). The highly abundant 5-n-hexyltetrahydrofuro-[3,2-b]furan-2(3H)-one (4) in Diachasmimorpha kraussii and D. longicaudata is of high ee (> 99%) with (3aR,5R,6aR) stereochemistry.
Resumo:
We have utilised the combination of sensitivity and specificity afforded by coupling high-performance liquid chromatography (HPLC) to a tandem mass spectrometer (MS-MS) to produce an assay which is suitable for assaying glutathione (GSH) concentrations in liver tissue. The sensitivity suggests it may also be suitable for extrahepatic tissues, The method has been validated for GSH using mouse liver samples and also allows the assay of GSSG. The stability of GSH under conditions relevant to the assay has been determined. A 20-mul amount of a diluted methanol extract of tissue is injected with detection limits of 0.2 pmol for GSH and 2 pmol for GSSG. The HPLC uses an Altima C-18 (150X4.6 mm, 5 mum) column at 35 degreesC. Chromatography utilises a linear gradient from 0 to 10% methanol in 0.1% formic acid over 5 min, with a final isocratic stage holding at 10% methanol for 5 min. Total flow rate is 0.8 ml/min. The transition from the M+H ion (308.1 m/z for GSH, and 613.3 m/z for GSSG) to the 162.0 m/z (GSH) and 355.3 m/z (GSSG) fragments are monitored. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The objective of this review is to summarize developments in the use of quantitative affinity chromatography to determine equilibrium constants for solute interactions of biological interest. Affinity chromatography is an extremely versatile method for characterizing interactions between dissimilar reactants because the biospecificity incorporated into the design of the affinity matrix ensures applicability of the method regardless of the relative sizes of the two reacting solutes. Adoption of different experimental strategies, such as column chromatography, simple partition equilibrium experiments, solid-phase immunoassay, and biosensor technology, has led to a situation whereby affinity chromatography affords a means of characterizing interactions governed by an extremely broad range of binding affinities-relatively weak interactions (binding constants below 10(3) M-1) through to interactions with binding constants in excess of 10(9) M-1. In addition to its important role in solute separation and purification, affinity chromatography thus also possesses considerable potential for investigating the functional roles of the reactants thereby purified. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The unusual chiral heterocyclic systems, trioxabicyclo[3.3.1]nona-3,7-dienes (bridged bisdioxines), are incorporated as novel spacer molecules into macrocyclic polyether ring systems of various sizes (8, 9 as well as 11-15) by cyclocondensation reaction of the! bisacid chloride 4b or bisesters 6,7 and 10, with several ethylene glycols. The 2:2 macrocycles 12-14 are obtained in approximately 50:50 mixtures of diastereomers. These conclusions are mainly based on HPLC data presented in Table I as well as X-ray analyses of (1R,5R)-8c (space group Pbca, a = 10.163(3) Angstrom, b = 18.999(4) Angstrom, c = 36.187(10) Angstrom, V = 6987(3) Angstrom(3), Z = 8, d(calc) = 1.218 g cm(-3), 6974 reflections, R = 0.0553.), mesolrac-11 (space group P (1) over bar, a = 10.472(5) Angstrom, b = 16.390(5) Angstrom, c = 17.211(5) Angstrom, alpha = 98.69(2)degrees, beta = 93.04(2)degrees, gamma = 98.52(2)degrees, V = 2879.3(18) Angstrom(3), Z = 2, d(calc) = 1.173 g cm(-3), 11,162 reflections, R = 0.0945) and meso-12 (space group P2(1)/c, a = 9.927(2), b = 18.166(3), c = 17.820(3) Angstrom, beta = 96.590(10)degrees, V = 3192.3(10)Angstrom(3), Z = 4, D-c = 1.109 g cm(-3), 3490 reflections, R = 0.0646). The 1:1 macrocycles 8b,c are also formed by intramolecular transesterification of the open-chain bisesters 7b,c and their formation is favored by the use of metal ions as templates. The bridged bisdioxine moieties in 8b and 12 are converted into the corresponding chiral tetra-oxaadamantane spacers to afford macrocycles 16 and 17. Preliminary metal ion complexation studies with selected species (8c, 11-14) were also performed.
Resumo:
We report here a validated method for the quantification of a new immunosuppressant drug, everolimus (SDZ RAD), using HPLC-tandem mass spectrometry. Whole blood samples (500 mul) were prepared by protein precipitation, followed by C-18 solid-phase extraction. Mass spectrometric detection was by selected reaction monitoring with an electrospray interface operating in positive ionization mode. The assay was linear from 0.5 to 100 mug/l (r(2) > 0.996, n = 9). The analytical recovery and inter-day imprecision, determined using whole blood quality control samples (n = 5) at 0.5, 1.2, 20.0, and 75.0 mug/l, was 100.3-105.4% and less than or equal to7.6%, respectively. The assay had a mean relative recovery of 94.8 +/- 3.8%. Extracted samples were stable for up to 24 h. Fortified everolimus blood samples were stable at -80 degreesC for at least 8 months and everolimus was found to be stable in blood when taken through at least three freeze-thaw cycles. The reported method provides accurate, precise and specific measurement of everolimus in blood over a wide analytical range and is currently supporting phase 11 and III clinical trials. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An active form of the Dengue virus protease NS3 (CF40.Gly.NS3pro) was expressed in Escherichia coli. This construct consists of a critical 40 amino acid cofactor domain from NS2B fused to the N-terminal 184 amino acid protease domain of NS3 via a flexible, covalent linker (Gly(4)SerGly(4)). The recombinantly produced protein is soluble and has a hexa-histidine tag engineered at the N-terminus for ease of purification using metal affinity chromatography. However, the presence of lower molecular weight impurities after affinity chromatography indicated the need for additional purification steps. The consistent appearance of these impurities suggested that they may be the products of proteolysis and/or auto-proteolysis. The latter possibility was subsequently excluded by the observation of the same impurities in a purified, catalytically inactive form of the recombinant protease (CF40.Gly.NS3pro.SA). Further analysis indicated that these impurities may represent premature translation termination products. Regardless of their origin, they were shown to form various sized aggregates with full-length CF40.Gly.NS3pro that can be separated by size exclusion chromatography, yielding fractions of active protease of sufficient purity for crystallisation trials. The ultimate goal of these studies is to obtain a crystal structure of a catalytically active form of the Dengue virus NS3 protease for structure-based drug design. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Death adders (genus Acanthophis) are unique among elapid snakes in both morphology and venom composition. Despite this genus being among the most divergent of all elapids, the venom has been historically regarded as relatively quite simple. In this study, liquid chromatography/mass spectrometry (LC/MS) analysis has revealed a. much greater diversity in venom composition, including the presence of molecules of novel molecular weights that may represent a new class of venom component. Furthermore, significant variation exists between species and populations,, which allow for the LC/MS fingerprinting of each species. Mass profiling of Acanthophis venoms clearly demonstrates the effectiveness of this technique which underpins fundamental studies ranging from chemotaxonomy to drug design. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
We studied the variation in toxin profiles of purified extracts of 10 individual specimens and two pools of ciguateric Caranx latus. High-performance liquid chromatography/mass spectrometry (HPLC/MS) identified in all individual samples at least seven Caribbean ciguatoxins (C-CTXs) comprising C-CTX-1 and its epimer C-CTX-2 ([M + H](+) m/z 1141.58), and five new C-CTX congeners with pseudo-molecular ions at m/z 1141.58, 1143.60, 1157.57, 1159.58, and 1127.57. In some samples, additional C-CTX isomers were detected with [M + H](+) ions at m/z 1141.58 (two), 1143.60 (one) and 1157.57 (two). The two low-toxic pools contained only four to six ciguatoxins. The comparison in relative proportions of four different mass classes ([M + H](+) at m/z 1141, 1143, 1157 and 1127) showed that the group at m/z 1157 increased (2-20%) with flesh toxicity. More than 80% of group m/z 1141 comprised C-CTX-1, C-CTX-2 and their isomer C-CTX-1 a whose level in this group correlated with fish toxicity. Contrary to low-toxic fishes, high-risk specimens had C-CTX-1 levels
Resumo:
A suite of allenic hydrocarbons, previously unknown as a molecular class from insects, has been characterized from several Australian melolonthine scarab beetles. The allenes are represented by the formula CH3(CH2)nCH=.=CH(CH2)(7)CH3 with n being 11-15, 17 and 19, and thus, all have Delta(9,10)-unsaturation. These structures have been confirmed by syntheses and comparisons of spectral and chromatographic properties with those of the natural components. The enantiomers of (+/-)-Delta(9,10)-tricosadiene and Delta(9,10)-pentacosadiene were separable on a modified beta-cyclodextrin column (gas chromatography), and the natural Delta(9,10)-tricosadiene (n = 11) and Delta(9,10)-pentacosadiene (n = 13) were shown to be of >85% ee. Syntheses of nonracemic allenes of known predominating chirality were acquired using both organotin chemistry and sulfonylhydrazine intermediates, and comparisons then demonstrated that the natural allenes were predominantly (R)-configured.
Resumo:
This investigation re-examines theoretical aspects of the allowance for effects of thermodynamic non-ideality on the characterization of protein self-association by frontal exclusion chromatography, and thereby provides methods of analysis with greater thermodynamic rigor than those used previously. Their application is illustrated by reappraisal of published exclusion chromatography data for hemoglobin on the controlled-pore-glass matrix CPG-120. The equilibrium constant of 100/M that is obtained for dimerization of the (02 species by this means is also deduced from re-examination of published studies of concentrated hemoglobin solutions by osmotic pressure and sedimentation equilibrium methods. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This review summarizes the development of exclusion chromatography, also termed gel filtration, molecular-sieve chromatography and gel permeation chromatography, for the quantitative characterization of solutes and solute interactions. As well as affording a means of determining molecular mass and molecular mass distribution, the technique offers a convenient way of characterizing solute selfassociation and solute-ligand interactions in terms of reaction stoichiometry and equilibrium constant. The availability of molecular-sieve media with different selective porosities ensures that very little restriction is imposed on the size of solute amenable to study. Furthermore, access to a diverse array of assay procedures for monitoring the column eluate endows analytical exclusion chromatography with far greater flexibility than other techniques from the viewpoint of solute concentration range that can be examined. In addition to its widely recognized prowess as a means of solute separation and purification, exclusion chromatography thus also possesses considerable potential for investigating the functional roles of the purified solutes. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This article reviews the progress of a personal endeavour to develop chromatography as a quantitative procedure for the determination of reaction stoichiometries and equilibrium constants governing protein interactions. As well as affording insight into an aspect of chromatography with which many protein chemists are unfamiliar, it shows the way in which minor adaptations of conventional chromatographic practices have rendered the technique one of the most powerful methods available for the characterization of interactions. That pathway towards quantification is followed from the introduction of frontal gel filtration for the study of protein self-association to the characterization of ligand binding by the biosensor variant of quantitative affinity chromatography.
Resumo:
A multiresidue gas chromatographic method for the determination of six fungicides (captan, chlorthalonil, folpet, iprodione, procymidone and vinclozolin) and one acaricide (dicofol) in still and fortified wines was developed. Solid-phase microextraction (SPME) was chosen for the extraction of the compounds from the studied matrices and tandem mass spectrometry (MS/MS) detection was used. The extraction consists in a solvent free and automated procedure and the detection is highly sensitive and selective. Good linearity was obtained with correlation coefficients of regression (R2) > 0.99 for all the compounds. Satisfactory results of repeatability and intermediate precision were obtained for most of the analytes (RSD < 20%). Recoveries from spiked wine ranged from 80.1% to 112.0%. Limits of quantification (LOQs) were considerably below the proposedmaximumresidue limits (MRLs) for these compounds in grapes and below the suggested limits for wine (MRLs/10), with the exception of captan.
Resumo:
We have developed a new method for single-drop microextraction (SDME) for the preconcentration of organochlorine pesticides (OCP) from complex matrices. It is based on the use of a silicone ring at the tip of the syringe. A 5 μL drop of n-hexane is applied to an aqueous extract containing the OCP and found to be adequate to preconcentrate the OCPs prior to analysis by GC in combination with tandem mass spectrometry. Fourteen OCP were determined using this technique in combination with programmable temperature vaporization. It is shown to have many advantages over traditional split/splitless injection. The effects of kind of organic solvent, exposure time, agitation and organic drop volume were optimized. Relative recoveries range from 59 to 117 %, with repeatabilities of <15 % (coefficient of variation) were achieved. The limits of detection range from 0.002 to 0.150 μg kg−1. The method was applied to the preconcentration of OCPs in fresh strawberry, strawberry jam, and soil.