929 resultados para chemotaxonomic markers
Resumo:
Using an established genetic map, a single gene conditioning covered smut resistance, Ruh.7H, was mapped to the telomere region of chromosome 7HS in an Alexis/Sloop doubled haploid barley population. The closest marker to Ruh.7H, abg704 was 7.5 cM away. Thirteen loci on the distal end of 7HS with potential to contain single nucleotide polymorphisms (SNPs) were identified by applying a comparative genomics approach using rice sequence data. Of these, one locus produced polymorphic co-dominant bands of different size while two further loci contained SNPs that were identified using the recently developed high resolution melting (HRM) technique. Two of these markers flanked Ruh.7H with the proximal marker located 3.8 cM and the distal marker 2.7 cM away. This is the first report on the application of the HRM technique to SNP detection and to rapid scoring of known cleaved amplified polymorphic sequence (CAPS) markers in plants. This simple, precise post-PCR technique should find widespread use in the fine-mapping of genetic regions of interest in complex cereal and other plant genomes.
Resumo:
The sequential nature of gel-based marker systems entails low throughput and high costs per assay. Commonly used marker systems such as SSR and SNP are also dependent on sequence information. These limitations result in high cost per data point and significantly limit the capacity of breeding programs to obtain sufficient return on investment to justify the routine use of marker-assisted breeding for many traits and particularly quantitative traits. Diversity Arrays Technology (DArT™) is a cost effective hybridisation-based marker technology that offers a high multiplexing level while being independent of sequence information. This technology offers sorghum breeding programs an alternative approach to whole-genome profiling. We report on the development, application, mapping and utility of DArT™ markers for sorghum germplasm. Results: A genotyping array was developed representing approximately 12,000 genomic clones using PstI+BanII complexity with a subset of clones obtained through the suppression subtractive hybridisation (SSH) method. The genotyping array was used to analyse a diverse set of sorghum genotypes and screening a Recombinant Inbred Lines (RIL) mapping population. Over 500 markers detected variation among 90 accessions used in a diversity analysis. Cluster analysis discriminated well between all 90 genotypes. To confirm that the sorghum DArT markers behave in a Mendelian manner, we constructed a genetic linkage map for a cross between R931945-2-2 and IS 8525 integrating DArT and other marker types. In total, 596 markers could be placed on the integrated linkage map, which spanned 1431.6 cM. The genetic linkage map had an average marker density of 1/2.39 cM, with an average DArT marker density of 1/3.9 cM. Conclusion: We have successfully developed DArT markers for Sorghum bicolor and have demonstrated that DArT provides high quality markers that can be used for diversity analyses and to construct medium-density genetic linkage maps. The high number of DArT markers generated in a single assay not only provides a precise estimate of genetic relationships among genotypes, but also their even distribution over the genome offers real advantages for a range of molecular breeding and genomics applications.
Resumo:
We have mapped and identified DNA markers linked to morphology, yield, and yield components of lucerne, using a backcross population derived from winter-active parents. The high-yielding and recurrent parent, D, produced individual markers that accounted for up to 18% of total yield over 6 harvests, at Gatton, south-eastern Queensland. The same marker, AC/TT8, was consistently identified at each individual harvest, and in individual harvests accounted for up to 26% of the phenotypic variation for yield. This marker was located in linkage group 2 of the D map, and several other markers positively associated with yield were consistently identified in this linkage group. Similarly, markers negatively associated with yield were consistently identified in the W116 map, W116 being the low-yielding parent. Highly significant positive correlations were observed between total yield and yield for harvests 1-6, and between total yield and stem length, tiller number, leaf yield/plant, leaf yield/5 stems, stem yield/plant, and stem yield/5 stems. Highly significant QTL were located for all these characters as well as for leaf shape and pubescence.
Resumo:
Black point in wheat has the potential to cost the Australian industry $A30.4 million a year. It is difficult and expensive to screen for resistance, so the aim of this study was to validate 3 previously identified quantitative trait loci (QTLs) for black point resistance on chromosomes 2B, 4A, and 3D of the wheat variety Sunco. Black point resistance data and simple sequence repeat (SSR) markers, linked to the resistance QTLs and suited to high-throughput assay, were analysed in the doubled haploid population, Batavia (susceptible) × Pelsart (resistant). Sunco and Pelsart both have Cook in their pedigree and both have the Triticum timopheevii translocation on 2B. SSR markers identified for the 3 genetic regions were gwm319 (2B, T. timopheevii translocation), wmc048 (4AS), and gwm341 (3DS). Gwm319 and wmc048 were associated with black point resistance in the validation population. Gwm341 may have an epistatic influence on the trait because when resistance alleles were present at both gwm319 and wmc048, the Batavia-derived allele at gwm341 was associated with a higher proportion of resistant lines. Data are presented showing the level of enrichment achieved for black point resistance, using 1, 2, or 3 of these molecular markers, and the number of associated discarded resistant lines. The level of population enrichment was found to be 1.83-fold with 6 of 17 resistant lines discarded when gwm319 and wmc048 were both used for selection. Interactions among the 3 QTLs appear complex and other genetic and epigenetic factors influence susceptibility to black point. Polymorphism was assessed for these markers within potential breeding material. This indicated that alternative markers to wmc048 may be required for some parental combinations. Based on these results, marker-assisted selection for the major black point resistance QTLs can increase the rate of genetic gain by improving the selection efficiency and may facilitate stacking of black point resistances from different sources.
Resumo:
A series of metabolism experiments investigated the recovery of continuous-, intravenously infused chromium complexed with ethylenediamine tetra-acetic acid (CrEDTA) and lithium sulphate in the urine of cattle with a view to using the markers to estimate urine and metabolite output in grazing cattle. The recovery of Cr in urine from these infusions was similar (90%) in metabolism trials when cattle consumed three very contrasting diets: high-grain formulated pellet, lucerne hay (Medicago sativa) or low-quality native grass hay (predominantly Heteropogon contortus). By contrast, Li recovery in urine averaged 46.3 +/- 0.40% and 72.6 +/- 0.43% for native pasture and lucerne hays, respectively, but was not constant across days. There was negligible transfer of Cr from CrEDTA in blood serum to the rumen or faeces, whereas appreciable quantities of infused Li were found in both. The ratio of urine volume estimated by spot samples and marker dilution of Cr, to urine volume measured gravimetrically, was 1.05. In grazing studies using rumen-fistulated (RF) steers grazing seven different tropical and temperate grass and legume pastures, the ratio of concentrations of purine derivatives (PD) to Cr in spot samples of urine was shown to vary diurnally in the range of 49% to 157% of the average 24 h value. This finding indicated the need for regular sampling of urine to achieve an accurate average value for the PD: Cr ratio in urine for use in estimating urinary PD excretion and hence microbial protein production in the rumen. It was concluded that continuous, intravenous infusion of CrEDTA resulted in a constant recovery of Cr in the urine of cattle across diets and, provided an intensive sampling regime was followed to account for diurnal variation, it would be suitable as a marker to estimate urine volume and urinary output of PD in grazing cattle.
Resumo:
Background: Sorghum genome mapping based on DNA markers began in the early 1990s and numerous genetic linkage maps of sorghum have been published in the last decade, based initially on RFLP markers with more recent maps including AFLPs and SSRs and very recently, Diversity Array Technology (DArT) markers. It is essential to integrate the rapidly growing body of genetic linkage data produced through DArT with the multiple genetic linkage maps for sorghum generated through other marker technologies. Here, we report on the colinearity of six independent sorghum component maps and on the integration of these component maps into a single reference resource that contains commonly utilized SSRs, AFLPs, and high-throughput DArT markers. Results: The six component maps were constructed using the MultiPoint software. The lengths of the resulting maps varied between 910 and 1528 cM. The order of the 498 markers that segregated in more than one population was highly consistent between the six individual mapping data sets. The framework consensus map was constructed using a "Neighbours" approach and contained 251 integrated bridge markers on the 10 sorghum chromosomes spanning 1355.4 cM with an average density of one marker every 5.4 cM, and were used for the projection of the remaining markers. In total, the sorghum consensus map consisted of a total of 1997 markers mapped to 2029 unique loci ( 1190 DArT loci and 839 other loci) spanning 1603.5 cM and with an average marker density of 1 marker/0.79 cM. In addition, 35 multicopy markers were identified. On average, each chromosome on the consensus map contained 203 markers of which 58.6% were DArT markers. Non-random patterns of DNA marker distribution were observed, with some clear marker-dense regions and some marker-rare regions. Conclusion: The final consensus map has allowed us to map a larger number of markers than possible in any individual map, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across individual component maps, good agreement in overall distances between common marker pairs across the component maps used in this study was determined, using a difference ratio calculation. The obtained consensus map can be used as a reference resource for genetic studies in different genetic backgrounds, in addition to providing a framework for transferring genetic information between different marker technologies and for integrating DArT markers with other genomic resources. DArT markers represent an affordable, high throughput marker system with great utility in molecular breeding programs, especially in crops such as sorghum where SNP arrays are not publicly available.
Resumo:
A new test for pathogenic Leptospira isolates, based on RAPD-PCR and high-resolution melt (HRM) analysis (which measures the melting temperature of amplicons in real time, using a fluorescent DNA-binding dye), has recently been developed. A characteristic profile of the amplicons can be used to define serovars or detect genotypes. Ten serovars, of leptospires from the species Leptospira interrogans (serovars Australis, Robinsoni, Hardjo, Pomona, Zanoni, Copenhageni and Szwajizak), L. borgpetersenii (serovar Arborea), L. kirschneri (serovar Cynopteri) and L. weilii (serovar Celledoni), were typed against 13 previously published RAPD primers, using a real-time cycler (the Corbett Life Science RotorGene 6000) and the optimised reagents from a commercial kit (Quantace SensiMix). RAPD-HRM at specific temperatures generated defining amplicon melt profiles for each of the tested serovars. These profiles were evaluated as difference-curve graphs generated using the RotorGene software package, with a cut-off of at least 8 'U' (plus or minus). The results demonstrated that RAPD-HRM can be used to measure serovar diversity and establish identity, with a high degree of stability. The characterisation of Leptospira serotypes using a DNA-based methodology is now possible. As an objective and relatively inexpensive and rapid method of serovar identification, at least for cultured isolates, RAPD-HRM assays show convincing potentia.
Resumo:
In cancer, a subpopulation of malignant cells expresses markers of normal stem cells. These cells have the potential of initiating tumor growth and therefore also tumor recurrence. Thus, these cells are called cancer stem cells. A myriad of markers have been applied to identify these cells, but no single marker can be found exclusively in cancer stem cells. In many types of cancer, clinical recurrence and tumor progression are the main causes of mortality, despite intense oncological treatment. It has been proposed that the presence of cancer stem cells causes this resistance to therapy. The scope of this thesis is to investigate the role of stem cell markers and genes in the clinical setting. Especially, the aim was to elucidate the clinical significance of stem cell markers as novel prognostic and diagnostic tools in cancer. Tumor biopsy material from central nervous system tumors (oligodendroglioma, astrocytoma and glioblatoma), neural crest derived tumors (pheochromocytomas) and oral carcinoma was screened for stem cell markers. Initially, 15 stem cell markers were screened in a test series of gliomas. The markers applied for expanded tumor analyses (in 305 cases of glioma, 42 cases of pheochromocytoma, and 73 cases of oral carcinoma) were BMI-1, Snail, p16, mdm2, and c-Myc. Data on marker expression was compared with clinical and pathological parameters. In gliomas, BMI-1 expression was found in nearly all tumors analyzed, but the frequency of BMI-1 expressing cells was highly variable, ranging from 1 to 100%. In oligodendroglioma, BMI-1 expression was identified as a prognostic marker independent of tumor grade and clinical parameters. In pheochromocytoma, Snail expression was shown to distinguish between the metastatic and non-metastatic forms of the tumor. Snail expression was seen only in metastatic tumors, whereas non-metastatic tumors did not commonly express Snail. Finally, in oral carcinoma, BMI-1 expression was seen in roughly 80% of tumors, and Snail expression was high or very high in all cases. The lack of BMI-1 expression was associated with early relapse in oral carcinoma.
Resumo:
This is a sub-project of the Australian Wheat and Barley Molecular Marker Program funded by GRDC and led by Drs Diane Mather and Ken Chalmers of University of Adelaide. In this sub-project we will supply phenotypic data on resistance to two species of root-lesion nematodes (Pratylenchus thornei and P. neglectus) on several populations of wheat doubled haploids. We will also supply existing genotypic data on one doubled haploid population. We will also test one population of doubled haploids (CPI133872/Janz) a second time for resistance to P. thornei and P. neglectus and supply this information to University of Adelaide for the development of molecular markers for use by wheat breeders in selecting for resistance to root-lesion nematodes.
Resumo:
Pre-emptive breeding for host disease resistance is an effective strategy for combating and managing devastating incursions of plant pathogens. Comprehensive, long-term studies have revealed that virulence to the R (2) sunflower (Helianthus annuus L.) rust resistance gene in the line MC29 does not exist in the Australian rust (Puccinia helianthi) population. We report in this study the identification of molecular markers linked to this gene. The three simple sequence repeat (SSR) markers ORS795, ORS882, and ORS938 were linked in coupling to the gene, while the SSR marker ORS333 was linked in repulsion. Reliable selection for homozygous-resistant individuals was efficient when the three markers, ORS795, ORS882, and ORS333, were used in combination. Phenotyping for this resistance gene is not possible in Australia without introducing a quarantinable race of the pathogen. Therefore, the availability of reliable and heritable DNA-based markers will enable the efficient deployment of this gene, permitting a more effective strategy for generating sustainable commercial cultivars containing this rust resistance gene.
Resumo:
Sepsis is associated with a systemic inflammatory response. It is characterised by an early proinflammatory response and followed by a state of immunosuppression. In order to improve the outcome of patients with infection and sepsis, novel therapies that influence the systemic inflammatory response are being developed and utilised. Thus, an accurate and early diagnosis of infection and evaluation of immune state are crucial. In this thesis, various markers of systemic inflammation were studied with respect to enhancing the diagnostics of infection and of predicting outcome in patients with suspected community-acquired infection. A total of 1092 acutely ill patients admitted to a university hospital medical emergency department were evaluated, and 531 patients with a suspicion of community-acquired infection were included for the analysis. Markers of systemic inflammation were determined from a blood sample obtained simultaneously with a blood culture sample on admission to hospital. Levels of phagocyte CD11b/CD18 and CD14 expression were measured by whole blood flow cytometry. Concentrations of soluble CD14, interleukin (IL)-8, and soluble IL-2 receptor α (sIL-2Rα) were determined by ELISA, those of sIL-2R, IL-6, and IL-8 by a chemiluminescent immunoassay, that of procalcitonin by immunoluminometric assay, and that of C-reactive protein by immunoturbidimetric assay. Clinical data were collected retrospectively from the medical records. No marker of systemic inflammation, neither CRP, PCT, IL-6, IL-8, nor sIL-2R predicted bacteraemia better than did the clinical signs of infection, i.e., the presence of infectious focus or fever or both. IL-6 and PCT had the highest positive likelihood ratios to identify patients with hidden community-acquired infection. However, the use of a single marker failed to detect all patients with infection. A combination of markers including a fast-responding reactant (CD11b expression), a later-peaking reactant (CRP), and a reactant originating from inflamed tissues (IL-8) detected all patients with infection. The majority of patients (86.5%) with possible but not verified infection showed levels exceeding at least one cut-off limit of combination, supporting the view that infection was the cause of their acute illness. The 28-day mortality of patients with community-acquired infection was low (3.4%). On admission to hospital, the low expression of cell-associated lipopolysaccharide receptor CD14 (mCD14) was predictive for 28-day mortality. In the patients with severe forms of community-acquired infection, namely pneumonia and sepsis, high levels of soluble CD14 alone did not predict mortality, but a high sCD14 level measured simultaneously with a low mCD14 raised the possibility of poor prognosis. In conclusion, to further enhance the diagnostics of hidden community-acquired infection, a combination of inflammatory markers is useful; 28-day mortality is associated with low levels of mCD14 expression at an early phase of the disease.
Resumo:
The eye is a simple, non-invasive location for screening, diagnosing and follow up of diabetic peripheral neuropathy.
The use of genetic correlations to evaluate associations between SNP markers and quantitative traits
Resumo:
Open-pollinated progeny of Corymbia citriodora established in replicated field trials were assessed for stem diameter, wood density, and pulp yield prior to genotyping single nucleotide polymorphisms (SNP) and testing the significance of associations between markers and assessment traits. Multiple individuals within each family were genotyped and phenotyped, which facilitated a comparison of standard association testing methods and an alternative method developed to relate markers to additive genetic effects. Narrow-sense heritability estimates indicated there was significant additive genetic variance within this population for assessment traits ( h ˆ 2 =0.28to0.44 ) and genetic correlations between the three traits were negligible to moderate (r G = 0.08 to 0.50). The significance of association tests (p values) were compared for four different analyses based on two different approaches: (1) two software packages were used to fit standard univariate mixed models that include SNP-fixed effects, (2) bivariate and multivariate mixed models including each SNP as an additional selection trait were used. Within either the univariate or multivariate approach, correlations between the tests of significance approached +1; however, correspondence between the two approaches was less strong, although between-approach correlations remained significantly positive. Similar SNP markers would be selected using multivariate analyses and standard marker-trait association methods, where the former facilitates integration into the existing genetic analysis systems of applied breeding programs and may be used with either single markers or indices of markers created with genomic selection processes.