922 resultados para cell cycle arrest
Resumo:
Growth of human promonocytic leukaemic U937 cells was found arrested within 24 h upon exposure to interferon gamma (IFN-gamma). Removal of the interferon did not result in the resumption of growth, as is evident from the absence of doubling of viable cell count and(3)H-thymidine incorporation. 5-Bromo-2'-deoxyuridine-based flow cytometric analysis of the growth-arrested cells, 24 h subsequent to the removal of IFN-gamma, showed absence of DNA synthesis, confirming the irreversible nature of the growth inhibition. Propidium iodide-based flow cytometric analysis of the growth-arrested cells showed a distribution which is typical of a growth inhibition without resulting in the accumulation of cells in any specific phase of the cell cycle. These results indicated that IFN-gamma arrested growth of U937 cells in an irreversible and cell cycle phase-independent manner. These observations were in contrast to our earlier report on the reversible and cell cycle phase-specific growth inhibition of human amniotic (fetal epithelial) WISH cells by the interferon. Copyright 1999 Academic Press.
Resumo:
Cisplatin-based regimens are currently the most effective chemotherapy for non-small cell lung cancer (NSCLC). Cisplatin forms DNA crosslinks to stall DNA replication and induce apoptosis. However, intrinsic and acquired chemoresistance is a major therapeutic problem. We have identified ‘cell division cycle associated protein 3’ (CDCA3) as a novel protein that may prove useful in delaying or preventing cisplatin resistance in NSCLC. CDCA3 functions as part of an ubiquitin ligase complex to degrade the endogenous cell cycle inhibitors. While a role for CDCA3 in disease is emerging with elevated expression noted in oral squamous cell carcinoma, little else is known about CDCA3 or whether this protein may prove useful clinically.
Resumo:
The endoplasmic reticulum (ER) and the Golgi apparatus are organelles that produce, modify and transport proteins and lipids and regulate Ca2+ environment within cells. Structurally they are composed of sheets and tubules. Sheets may take various forms: intact, fenestrated, single or stacked. The ER, including the nuclear envelope, is a single continuous network, while the Golgi shows only some level of connectivity. It is often unclear, how different morphologies correspond to particular functions. Previous studies indicate that the structures of the ER and Golgi are dynamic and regulated by fusion and fission events, cytoskeleton, rate of protein synthesis and secretion, and specific structural proteins. For example, many structural proteins shaping tubular ER have been identified, but sheet formation is much more unclear. In this study, we used light and electron microscopy to study morphological changes of the ER and Golgi in mammalian cells. The proportion, type, location and dynamics of ER sheets and tubules were found to vary in a cell type or cell cycle stage dependent manner. During interphase, ER and Golgi structures were demonstrated to be regulated by p37, a cofactor of the fusion factor p97, and microtubules, which also affected the localization of the organelles. Like previously shown for the Golgi, the ER displayed a tendency for fenestration and tubulation during mitosis. However, this shape change did not result in ER fragmentation as happens to Golgi, but a continuous network was retained. The activity of p97/p37 was found to be important for the reassembly of both organelles after mitosis. In EM images, ER sheet membranes appear rough, since they contain attached ribosomes, whereas tubular membranes appear smooth. Our studies revealed that structural changes of the ER towards fenestrated and tubular direction correlate with loss of ER-bound ribosomes and vice versa. High and low curvature ER membranes have a low and high density of ribosomes, respectively. To conclude, both ER and Golgi architecture depend on fusion activity of p97/p37. ER morphogenesis, particularly of the sheet shape, is intimately linked to the density of membrane bound ribosomes.
Resumo:
Glioblastoma (GBM; grade IV astrocytoma) is a very aggressive form of brain cancer with a poor survival and few qualified predictive markers. This study integrates experimentally validated genes that showed specific upregulation in GBM along with their protein-protein interaction information. A system level analysis was used to construct GBM-specific network. Computation of topological parameters of networks showed scale-free pattern and hierarchical organization. From the large network involving 1,447 proteins, we synthesized subnetworks and annotated them with highly enriched biological processes. A careful dissection of the functional modules, important nodes, and their connections identified two novel intermediary molecules CSK21 and protein phosphatase 1 alpha (PP1A) connecting the two subnetworks CDC2-PTEN-TOP2A-CAV1-P53 and CDC2-CAV1-RB-P53-PTEN, respectively. Real-time quantitative reverse transcription-PCR analysis revealed CSK21 to be moderately upregulated and PP1A to be overexpressed by 20-fold in GBM tumor samples. Immunohistochemical staining revealed nuclear expression of PP1A only in GBM samples. Thus, CSK21 and PP1A, whose functions are intimately associated with cell cycle regulation, might play key role in gliomagenesis. Cancer Res; 70(16); 6437-47. (C)2010 AACR.
Resumo:
The yeast Bud31 protein, a Prp19 complex (NTC) member, aids spliceosome assembly and thus promotes efficient pre-mRNA splicing. The bud31 null cells show mild budding abnormalities at optimal growth temperatures and, at higher temperatures, have growth defects with aberrant budding. Here we have assessed cell cycle transitions which require Bud31. We find Bud31 facilitates passage through G1-S regulatory point (Start) but is not needed for G2-M transition or for exit from mitosis. To co-relate Bud31 functions in cell division with splicing, we studied the splicing status of transcripts that encode proteins involved in budding. We find Bud31 promotes efficient splicing of only some of these pre-mRNAs, for example, ARP2 and SRC1. Wild type cells have a long and a short isoform of SRC1 mRNA and protein, out of which the shorter mRNA splice variant is predominant. bud31 Delta cells show inefficient SRC1 splicing and entirely lack the shorter SRC1 spliced mRNA isoform. Yeast PRP17, another NTC sub-complex member, is also required for G1-S and G2-M cell cycle transitions. We examined genetic interactions between BUD31 and PRP17. While both factors were needed for efficient cell cycle dependent gene expression, our data indicate that distinct pre-mRNAs depend on each of these non-essential splicing factors.
Resumo:
Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c(-/-), mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence.
Resumo:
5,6-Bis(benzylideneamino)-2-mercaptopyrimidin-4-ol (SCR7) is a new anti cancer molecule having capability to selectively inhibit non-homologous end joining (NHEJ), one of the DNA double strand break (DSB) repair pathways inside the cells. In spite of the promising potential as an anticancer agent, hydrophobicity of SCR7 decreases its bioavailability. Herein the entrapment of SCR7 in Pluronic copolymer is reported. The size of the aggregates was determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) which yields an average diameter of 23 nm. SCR7 encapsulated micelles (ES) were also characterized by small-angle neutron scattering (SANS). Evaluation of its biological properties by using a variety of techniques, including Trypan blue, MTT and Live-dead cell assays, reveal that encapsulated SCR7 can induce cytotoxicity in cancer cell lines, being more effective in breast cancer cell line. Encapsulated SCR7 treatment resulted in accumulation of DNA breaks within the cells, resulting in cell cycle arrest at G1 phase and activation of apoptosis. More importantly, we found approximate to 5 fold increase in cell death, when encapsulated SCR7 was used in comparison with SCR7 alone.
Resumo:
Among the multiple modulatory physical cues explored to regulate cellular processes, the potential of magneto-responsive substrates in magnetic field stimulated stem cell differentiation is still unperceived. In this regard, the present work demonstrates how an external magnetic field can be applied to direct stem cell differentiation towards osteogenic commitment. A new culture methodology involving periodic delivery of 100 mT static magnetic field (SMF) in combination with HA-Fe3O4 magnetic substrates possessing a varying degree of substrate magnetization was designed for the study. The results demonstrate that an appropriate combination of weakly ferromagnetic substrates and SMF exposure enhanced cell viability, DNA synthesis and caused an early switchover to osteogenic lineage as supported by Runx2 immunocytochemistry and ALP expression. However, the mRNA expression profile of early osteogenic markers (Runx2, ALP, Col IA) was comparable despite varying substrate magnetic properties (diamagnetic to ferromagnetic). On the contrary, a remarkable upregulation of late bone development markers (OCN and OPN) was explicitly detected on weak and strongly ferromagnetic substrates. Furthermore, SMF induced matrix mineralization with elevated calcium deposition on similar substrates, even in the absence of osteogenic supplements. More specifically, the role of SMF in increasing intracellular calcium levels and in inducing cell cycle arrest at G0/G1 phase was elucidated as the major molecular event triggering osteogenic differentiation. Taken together, the above results demonstrate the competence of magnetic stimuli in combination with magneto-responsive biomaterials as a potential strategy for stem cell based bone tissue engineering.
Resumo:
Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing.
Resumo:
This study was designed to comprehensively analyze the differential expression of proteins from human umbilical vein endothelial cells (HUVECs) exposed to tumor conditioned medium (TCM) and to identify the key regulator in the cell cycle progression. The HUVECs were exposed to TCM from breast carcinoma cell line MDA-MB-231, then their cell cycle distribution was measured by flow cytometer (FCM). The role of protein in cell cycle progression was detected via two-dimensional polyacrylamide gel electrophoresis (2-DE) and western blotting. Following the stimulation of TCM, HUVECs showed a more cells in the S phase than did the negative control group (ECGF-free medium with 20% FBS), but the HUVECs' level was similar to the positive control group (medium with 25 mug/ml ECGF and 20% FBS). Increased expression of cyclin D-1/E and some changes in other related proteins occurred after incubation with TCM. From our results, we can conclude that breast carcinoma cell line MDA-MB-231 may secrete soluble pro-angiogenic factors that induce the HUVEC angiogenic switch, during which the expression of cell cycle regulator cyclin D-1/E increases and related proteins play an important role in this process.
Resumo:
There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 mu g/mL) or even protected cells from basal death (P. putumayoense) in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS). These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.
Resumo:
Small nuclear ribonucleoprotein particles (snRNPs) and non-snRNP splicing factors containing a serine/arginine-rich domain (SR proteins) concentrate in 'speckles' in the nucleus of interphase cells(1). It is believed that nuclear speckles act as storage sites for splicing factors while splicing occurs on nascent transcripts(2). Splicing factors redistribute in response to transcription inhibition(3,4) or viral infection(5), and nuclear speckles break down and reform as cells progress through mitosis(6). We have now identified and cloned a kinase, SRPK1, which is regulated by the cell cycle and is specific for SR proteins; this kinase is related to a Caenorhabditis elegans kinase and to the fission yeast kinase Dsk1 (ref. 7). SRPK1 specifically induces the disassembly of nuclear speckles, and a high level of SRPK1 inhibits splicing in vitro. Our results indicate that SRPK1 mag have a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells, and the reorganization of nuclear speckles during mitosis.
Resumo:
Absence of gravity or microgravity influences the cellular functions of bone forming osteoblasts. The underlying mechanism, however, of cellular sensing and responding to the gravity vector is poorly understood. This work quantified the impact of vector-directional gravity on the biological responses of Ros 17/2.8 cells grown on upward-, downward- or edge-on-oriented substrates. Cell morphology and nuclear translocation, cell proliferation and the cell cycle, and cytoskeletal reorganization were found to vary significantly in the three orientations. All of the responses were duration-dependent. These results provide a new insight into understanding how osteoblasts respond to static vector-directional gravity.