971 resultados para carbon fibre


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Out-of-autoclave processing parameters were tailored to investigate the effect of resin viscosity on mechanical performance. Faster heating rates improved the shear and fracture mechanisms of carbon fibre composites by improving their fibre to matrix adhesion, as a result of a decrease in resin viscosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun nanofibres have emerged as important fibrous materials for diverse applications. They have been shown excellent toughening results when they are applied as interlayer materials between carbon/epoxy laminas in the structural carbon fibre reinforced epoxy matrix composites. They also exhibit synergistic modification effects when they are combined with carbon nanofibres in the thermosetting polymer matrix. In this study, electrospun polyetherketone cardo (PEK-C) nanofibres were used in two ways: directly electrospun onto the surface of carbon fabric [1], and blended with epoxy resin in the form of PEK-C/VGCNF (vapour grown carbon nanofibre) composite nanofibres[2].The interlaminar fracture toughness, flexural properties and thermal mechanical properties of the modified systems were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interlaminar toughening of a carbon fibre reinforced composite by interleaving a thin layer (~20 microns) of poly(hydroxyether of bisphenol A) (phenoxy) nanofibres was explored in this work. Nanofibres, free of defect and averaging several hundred nanometres, were produced by electrospinning directly onto a pre-impregnated carbon fibre material (Toray G83C) at various concentrations between 0.5 wt % and 2 wt %. During curing at 150 °C, phenoxy diffuses through the epoxy resin to form a semi interpenetrating network with an inverse phase type of morphology where the epoxy became the co-continuous phase with a nodular morphology. This type of morphology improved the fracture toughness in mode I (opening failure) and mode II (in-plane shear failure) by up to 150% and 30%, respectively. Interlaminar shear stress test results showed that the interleaving did not negatively affect the effective in-plane strength of the composites. Furthermore, there was some evidence from DMTA and FT-IR analysis to suggest that inter-domain etherification between the residual epoxide groups with the pendant hydroxyl groups of the phenoxy occurred, also leading to an increase in glass transition temperature (~7.5 °C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared to the neat matrix material, FRC has highly favorable mechanical properties, and their strength-to-weight ratios are superior. In addition, FRCs have potential for use in many applications in dentistry and are expected to gain increasing applications in the future. This book includes both review and research papers in different FRC areas from contributors around the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light-weight structure is one of the keys to improve the fuel efficiency and reduce the environmental buden of transport vehicles (automotive and rail). While fibreglass composites have been increasingly used to replace steel in automotive industry, the adoption rate for carbon fibre composites which are much lighter, stronger and stiffere than glass fibre composites, remains low. The main reason is the high cost of carbon fibres. To further reduce vehicle weight without excessive cost increase, one technique is to incorporate carbon fibre reinforcement into glass fibre composites and innovative design by selectively reinforcing along the main load path. Glass/carbon woven fabrics with epoxy resin matrix were utilised for preparing hybrid composite laminates. The in-plane mechanical properties such as tensile and three-point-bending flexural properties were investigated for laminates with different carbon fibre volume and lay-up scheme. It is shown that hybrid composite laminates with 50% carbon fibre reinforcement provide the best flexural properties when the carbon layers are at the exterior, while the alternating carbon/glass lay-up provides the highest compressive strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the effect of various aging environments on the painted surface finish of unidirectional carbon fibre composite laminates, manufactured by autoclave and a novel out-of-autoclave technique was investigated. Laminates were exposed to water immersion, 95 % relative humidity and cyclic environments for 552 h and the surface finish was evaluated using visual and wave-scan distinctness of image (DOI) techniques. It was found that the laminate surface finish was dependent on the amount of moisture in the aging test. Minor surface waviness occurred on the laminates exposed to the cyclic test, whereas, surface waviness, print through and DOI values were all significantly higher as the laminates absorbed larger quantities of moisture from the hygrothermal and hydrothermal tests. The water immersion test, which was the most detrimental to the surface finish of the painted laminates, produced dense blistering on the autoclave manufactured laminate surface whereas the out-of-autoclave laminate surface produced only a few. It was found that the out-of-autoclave laminate had high substrate surface roughness which resulted in improved paint adhesion and, therefore, prevented the formation of surface blistering with aging. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, the effect of hygrothermal aging on the painted surface finish of unidirectional and fabric carbon fibre composite laminates, with and without surfacing film was investigated. The results highlighted the importance of ensuring that the composite surface directly beneath the paint layer is made from a uniform material with a consistent thickness in order to minimise surface defects from occurring during aging. The surfacing film was found to minimise the print through development on the painted unidirectional and twill composite surfaces. However, the surfacing film layer was found to intermingle with the carbon fibre plies during cure, which resulted in an uneven film thickness that caused increased levels of orange peel. The twill laminate painted surface produced high levels of print through and surface waviness that was caused by the large resin rich regions located within the tow intersections at the surface which enlarged due to thermal expansion and swelling of the matrix with hygrothermal aging. It was also noted that the small resin rich regions between the individual carbon fibres on the unidirectional composite surface were sufficiently large to print through the painted surface.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex molecules have been successfully grafted onto the surface of unsized carbon fibre, a heterogeneous material which is a challenge to functionalise. The in situ generation of highly reactive phenyldiazo-species from their corresponding anilines was employed to achieve this task. The success of an initial proof-of-concept study (bearing a nitro moiety) supported by X-ray Photoelectron Spectroscopy (XPS) and physical characterisation, led to the design and synthesis of a more complex compound possessing a pendant amine moiety which could theoretically react with an epoxide based resin. After attachment to unsized oxidised fibres, analysis by XPS of the resulting fibres (fluorine used as an XPS tag) indicated a marked difference in functionalisation success which was attributed to steric factors, shown to be critical in influencing the attachment of the phenyldiazo-intermediate to the carbon fibre surface. Analysis of key fibre performance parameters of these fibres showed no change in elastic modulus, strength, surface topography or microscopic roughness when compared to the control unsized oxidised fibres. The functionalised fibres did however show a large increase in coefficient of friction. Single fibre fragmentation tests indicated a marked increase in interfacial shear strength, which was attributed to the pendent amine functionalities interacting with the epoxy resin.