933 resultados para canonical matrices
Resumo:
The attractiveness of the trophic concept is that it was the first attempt at a holistic perspective on an ecosystem which met with any degree of success. Just as temperature, pressure, and volume allow one to characterize the incomprehensible multitude of particulate motions in a simple gas, the hope is that a small set of figures, such as trophic storages or trophic efficiencies, permit one to compare two ecosystems with overwhelmingly disparate complexities. Thus, if it were possible to demonstrate that an arbitrary network of ecosystem flows could be reduced to a trophic configuration, the aggregation process thus defined would become a key component of the evolving discipline of "macroscopic ecology" (see also Odum 1977 and Ulanowicz 1979).
Quantitative, Time-Resolved Proteomic Analysis Using Bio-Orthogonal Non-Canonical Amino Acid Tagging
Resumo:
Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.
Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.
Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.
In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.
In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.
Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.
Resumo:
The structure of the set ϐ(A) of all eigenvalues of all complex matrices (elementwise) equimodular with a given n x n non-negative matrix A is studied. The problem was suggested by O. Taussky and some aspects have been studied by R. S. Varga and B.W. Levinger.
If every matrix equimodular with A is non-singular, then A is called regular. A new proof of the P. Camion-A.J. Hoffman characterization of regular matrices is given.
The set ϐ(A) consists of m ≤ n closed annuli centered at the origin. Each gap, ɤ, in this set can be associated with a class of regular matrices with a (unique) permutation, π(ɤ). The association depends on both the combinatorial structure of A and the size of the aii. Let A be associated with the set of r permutations, π1, π2,…, πr, where each gap in ϐ(A) is associated with one of the πk. Then r ≤ n, even when the complement of ϐ(A) has n+1 components. Further, if π(ɤ) is the identity, the real boundary points of ɤ are eigenvalues of real matrices equimodular with A. In particular, if A is essentially diagonally dominant, every real boundary point of ϐ(A) is an eigenvalues of a real matrix equimodular with A.
Several conjectures based on these results are made which if verified would constitute an extension of the Perron-Frobenius Theorem, and an algebraic method is introduced which unites the study of regular matrices with that of ϐ(A).
Resumo:
The use of transmission matrices and lumped parameter models for describing continuous systems is the subject of this study. Non-uniform continuous systems which play important roles in practical vibration problems, e.g., torsional oscillations in bars, transverse bending vibrations of beams, etc., are of primary importance.
A new approach for deriving closed form transmission matrices is applied to several classes of non-uniform continuous segments of one dimensional and beam systems. A power series expansion method is presented for determining approximate transmission matrices of any order for segments of non-uniform systems whose solutions cannot be found in closed form. This direct series method is shown to give results comparable to those of the improved lumped parameter models for one dimensional systems.
Four types of lumped parameter models are evaluated on the basis of the uniform continuous one dimensional system by comparing the behavior of the frequency root errors. The lumped parameter models which are based upon a close fit to the low frequency approximation of the exact transmission matrix, at the segment level, are shown to be superior. On this basis an improved lumped parameter model is recommended for approximating non-uniform segments. This new model is compared to a uniform segment approximation and error curves are presented for systems whose areas very quadratically and linearly. The effect of varying segment lengths is investigated for one dimensional systems and results indicate very little improvement in comparison to the use of equal length segments. For purposes of completeness, a brief summary of various lumped parameter models and other techniques which have previously been used to approximate the uniform Bernoulli-Euler beam is a given.
Resumo:
We are concerned with the class ∏n of nxn complex matrices A for which the Hermitian part H(A) = A+A*/2 is positive definite.
Various connections are established with other classes such as the stable, D-stable and dominant diagonal matrices. For instance it is proved that if there exist positive diagonal matrices D, E such that DAE is either row dominant or column dominant and has positive diagonal entries, then there is a positive diagonal F such that FA ϵ ∏n.
Powers are investigated and it is found that the only matrices A for which Am ϵ ∏n for all integers m are the Hermitian elements of ∏n. Products and sums are considered and criteria are developed for AB to be in ∏n.
Since ∏n n is closed under inversion, relations between H(A)-1 and H(A-1) are studied and a dichotomy observed between the real and complex cases. In the real case more can be said and the initial result is that for A ϵ ∏n, the difference H(adjA) - adjH(A) ≥ 0 always and is ˃ 0 if and only if S(A) = A-A*/2 has more than one pair of conjugate non-zero characteristic roots. This is refined to characterize real c for which cH(A-1) - H(A)-1 is positive definite.
The cramped (characteristic roots on an arc of less than 180°) unitary matrices are linked to ∏n and characterized in several ways via products of the form A -1A*.
Classical inequalities for Hermitian positive definite matrices are studied in ∏n and for Hadamard's inequality two types of generalizations are given. In the first a large subclass of ∏n in which the precise statement of Hadamardis inequality holds is isolated while in another large subclass its reverse is shown to hold. In the second Hadamard's inequality is weakened in such a way that it holds throughout ∏n. Both approaches contain the original Hadamard inequality as a special case.