929 resultados para candidate genes
Resumo:
Objective: To identify differentially expressed genes in peripheral blood mononuclear cells (PBMCs) from patients with ankylosing spondylitis (AS) compared with healthy individuals. Methods: RNA was extracted from PBMCs collected from 18 patients with active disease and 18 gender-matched and age-matched controls. Expression profiles of these cells were determined using microarray. Candidate genes with differential expressions were confirmed in the same samples using quantitative reverse transcription-PCR (qRT-PCR). These genes were then validated in a different sample cohort of 35 patients with AS and 18 controls by qRT-PCR. Results: Microarray analysis identified 452 genes detected with 485 probes which were differentially expressed between patients with AS and controls. Underexpression of NR4A2, tumour necrosis factor AIP3 (TNFAIP3) and CD69 was confirmed. These genes were further validated in a different sample group in which the patients with AS had a wider range of disease activity. Predictive algorithms were also developed from the expression data using receiver-operating characteristic curves, which demonstrated that the three candidate genes have ∼80% power to predict AS according to their expression levels. Conclusions: The findings show differences in global gene expression patterns between patients with AS and controls, suggesting an immunosuppressive phenotype in the patients. Furthermore, downregulated expression of three immune-related genes was confirmed. These candidate genes were also shown to be strong predictive markers for AS.
Resumo:
Cardiovascular diseases (CVD) are a major cause of death and disability in Western countries and a growing health problem in the developing world. The genetic component of both coronary heart disease (CHD) and ischemic stroke events has been established in twin studies, and the traits predisposing to CVD, such as hypertension, dyslipidemias, obesity, diabetes, and smoking behavior, are all partly hereditary. Better understanding of the pathophysiology of CVD-related traits could help to target disease prevention and clinical treatment to individuals at an especially high disease risk and provide novel pharmaceutical interventions. This thesis aimed to clarify the genetic background of CVD at a population level using large Nordic population cohorts and a candidate gene approach. The first study concentrated on the allelic diversity of the thrombomodulin (THBD) gene in two Finnish cohorts, FINRISK-92 and FINRISK-97. The results from this study implied that THBD variants do not substantially contribute to CVD risk. In the second study, three other candidate genes were added to the analyses. The study investigated the epistatic effects of coagulation factor V (F5), intercellular adhesion molecule -1 (ICAM1), protein C (PROC), and THBD in the same FINRISK cohorts. The results were encouraging; we were able to identify several single SNPs and SNP combinations associating with CVD and mortality. Interestingly, THBD variants appeared in the associating SNP combinations despite the negative results from Study I, suggesting that THBD contributes to CVD through gene-gene interactions. In the third study, upstream transcription factor -1 (USF1) was analyzed in a cohort of Swedish men. USF1 was associated with metabolic syndrome, characterized by accumulation of different CVD risk factors. A putative protective and a putative risk variant were identified. A direct association with CVD was not observed. The longitudinal nature of the study also clarified the effect of USF1 variants on CVD risk factors followed in four examinations throughout adulthood. The three studies provided valuable information on the study of complex traits, highlighting the use of large study samples, the importance of replication, and the full coverage of the major allelic variants of the target genes to assure reliable findings. Although the genetic basis of coronary heart disease and ischemic stroke remains unknown, single genetic findings may facilitate the recognition of high-risk subgroups.
Resumo:
Identification of candidate genes controlling, mango tree architecture.
Resumo:
Schizophrenia is a severe mental disorder affecting 0.4-1% of the population worldwide. It is characterized by impairments in the perception of reality and by significant social or occupational dysfunction. The disorder is one of the major contributors to the global burden of diseases. Studies of twins, families, and adopted children point to strong genetic components for schizophrenia, but environmental factors also play a role in the pathogenesis of disease. Molecular genetic studies have identified several potential positional candidate genes. The strongest evidence for putative schizophrenia susceptibility loci relates to the genes encoding dysbindin (DTNBP1) and neuregulin (NRG1), but studies lack impressive consistency in the precise genetic regions and alleles implicated. We have studied the role of three potential candidate genes by genotyping 28 single nucleotide polymorphisms in the DNTBP1, NRG1, and AKT1 genes in a large schizophrenia family sample consisting of 441 families with 865 affected individuals from Finland. Our results do not support a major role for these genes in the pathogenesis of schizophrenia in Finland. We have previously identified a region on chromosome 5q21-34 as a susceptibility locus for schizophrenia in a Finnish family sample. Recently, two studies reported association between the γ-aminobutyric acid type A receptor cluster of genes in this region and one study showed suggestive evidence for association with another regional gene encoding clathrin interactor 1 (CLINT1, also called Epsin 4 and ENTH). To further address the significance of these genes under the linkage peak in the Finnish families, we genotyped SNPs of these genes, and observed statistically significant association of variants between GABRG2 and schizophrenia. Furthermore, these variants also seem to affect the functioning of the working memory. Fetal events and obstetric complications are associated with schizophrenia. Rh incompatibility has been implicated as a risk factor for schizophrenia in several epidemiological studies. We conducted a family-based candidate-gene study that assessed the role of maternal-fetal genotype incompatibility at the RhD locus in schizophrenia. There was significant evidence for an RhD maternal-fetal genotype incompatibility, and the risk ratio was estimated at 2.3. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia. In conclusion, in this thesis we found evidence that one GABA receptor subunit, GABRG2, is significantly associated with schizophrenia. Furthermore, it also seems to affect to the functioning of the working memory. In addition, an RhD maternal-fetal genotype incompatibility increases the risk of schizophrenia by two-fold.
Resumo:
Endometriosis is a complex disease involving multiple susceptibility genes and environmental factors. Our previous studies on endometriosis identified a region of significant linkage on chromosome 10q. Two biological candidate genes (CYP17A1 and IFIT1) located on chromosome 10q, have previously been implicated in endometriosis and/or uterine function. We hypothesized that variation in CYP17A1 and/or IFIT1 could contribute to the risk of endometriosis and may account for some of the linkage signal on chromosome 10q. We genotyped 17 single nucleotide polymorphisms (SNPs) in the CYP17A1 and IFIT1 genes including SNP rs743572 previously associated with endometriosis in 768 endometriosis cases and 768 unrelated controls. We found no evidence for association between endometriosis and individual SNPs or SNP haplotypes in CYP17A1 and IFIT1. Common variation in these genes does not appear to be a major contributor to endometriosis susceptibility in our Australian sample.
Resumo:
Cherax quadricarinatus (Redclaw), C. destructor (Yabby) and C. cainii (Marron) are a group of economically important freshwater crayfish and have been developed for aquaculture production in many countries. As crayfish are farmed in a wide range of culture conditions, optimisation of water quality parameters, are crucial for their maximum growth performance. Previous reports have shown that fluctuations in water quality can negatively impact on growth of crayfish. Therefore, this project aims to identify and characterize the major genes that enable freshwater crayfish to persist in different water chemistries and evaluate their patterns of expression under different water parameters. Overall, this project found a number of candidate genes in all three species and determined that water chemistry had a strong influence on the expression of candidate genes. This information is important in the optimization of water quality parameters in freshwater crayfish aquaculture production.
Resumo:
Purpose: Mutations in IDH3B, an enzyme participating in the Krebs cycle, have recently been found to cause autosomal recessive retinitis pigmentosa (arRP). The MDH1 gene maps within the RP28 arRP linkage interval and encodes cytoplasmic malate dehydrogenase, an enzyme functionally related to IDH3B. As a proof of concept for candidate gene screening to be routinely performed by ultra high throughput sequencing (UHTs), we analyzed MDH1 in a patient from each of the two families described so far to show linkage between arRP and RP28. Methods: With genomic long-range PCR, we amplified all introns and exons of the MDH1 gene (23.4 kb). PCR products were then sequenced by short-read UHTs with no further processing. Computer-based mapping of the reads and mutation detection were performed by three independent software packages. Results: Despite the intrinsic complexity of human genome sequences, reads were easily mapped and analyzed, and all algorithms used provided the same results. The two patients were homozygous for all DNA variants identified in the region, which confirms previous linkage and homozygosity mapping results, but had different haplotypes, indicating genetic or allelic heterogeneity. None of the DNA changes detected could be associated with the disease. Conclusions: The MDH1 gene is not the cause of RP28-linked arRP. Our experimental strategy shows that long-range genomic PCR followed by UHTs provides an excellent system to perform a thorough screening of candidate genes for hereditary retinal degeneration.
Resumo:
Multiple sclerosis (MS) is the most common cause of neurological disability in young adults, affecting more than two million people worldwide. It manifests as a chronic inflammation in the central nervous system (CNS) and causes demyelination and neurodegeneration. Depending on the location of the demyelinated plaques and axonal loss, a variety of symptoms can be observed including deficits in vision, coordination, balance and movement. With a typical age of onset at 20-40 years, the social and economic impacts of MS on lives of the patients and their families are considerable. Unfortunately the current treatments are relatively inefficient and the development of more effective treatments has been impeded by our limited understanding of the causes and pathogenesis of MS. Risk of MS is higher in biological relatives of MS patients than in the general population. Twin and adoption studies have shown that familial clustering of MS is explained by shared genetic factors rather than by shared familial environment. While the involvement of the human leukocyte antigen (HLA) genes was first discovered four decades ago, additional genetic risk factors have only recently been identified through genome-wide association studies (GWAS). Current evidence suggests that MS is a highly polygenic disease with perhaps hundreds of common variants with relatively modest effects contributing to susceptibility. Despite extensive research, the majority of these risk factors still remain to be identified. In this thesis the aim was to identify novel genes and pathways involved in MS. Using genome-wide microarray technology, gene expression levels in peripheral blood mononuclear cells (PBMC) from 12 MS patients and 15 controls were profiled and more than 600 genes with altered expression in MS were identified. Three of five selected findings, DEFA1A3, LILRA4 and TNFRSF25, were successfully replicated in an independent sample. Increased expression of DEFA1A3 in MS is a particularly interesting observation, because its elevated levels have previously been reported also in several other autoimmune diseases. A systematic review of seven microarray studies was then performed leading to identification of 229 genes, in which either decreased or increased expression in MS had been reported in at least two studies. In general there was relatively little overlap across the experiments: 11 of the 229 genes had been reported in three studies and only HSPA1A in four studies. Nevertheless, these 229 genes were associated with several immunological pathways including interleukin pathways related to type 2 and type 17 helper T cells and regulatory T cells. However, whether these pathways are involved in causing MS or related to secondary processes activated after disease onset remains to be investigated. The 229 genes were also compared with loci identified in published MS GWASs. Single nucleotide polymorphisms (SNP) in 17 of the 229 loci had been reported to be associated with MS with P-value less than 0.0001 including variants in CXCR4 and SAPS2, which were the only loci where evidence for correlation between the associated variant and gene expression was found. The CXCR4 variant was further tested for association with MS in a large case-control sample and the previously reported suggestive association was replicated (P-value is 0.0004). Finally, common genetic variants in candidate genes, which had been selected on the basis of showing association with other autoimmune diseases (MYO9B) or showing differential expression in MS in our study (DEFA1A3, LILRA4 and TNFRSF25), were tested for association with MS, but no evidence of association was found. In conclusion, through a systematic review of genome-wide expression studies in MS we have identified several promising candidate genes and pathways for future studies. In addition, we have replicated a previously suggested association of a SNP variant upstream of CXCR4 with MS. Keywords: autoimmune disease, common variant, CXCR4, DEFA1A3, HSPA1A,gene expression, genetic association, GWAS, MS, multiple sclerosis, systematic review
Resumo:
The parasitic copepod Sinergasilus major is an important pathogen of grass carp Ctenopharyngodon idella. To understand the immune response of grass carp to the copepod infection, suppression subtractive hybridization method was employed to characterize genes up-regulation during the copepod infection in liver and gills of the fish. One hundred and twenty-two dot blot positive clones from infected subtracted library were sequenced. Searching available databases by using these nucleotide sequences revealed that 23 genes are immune-related, including known acute-phase reactants, and four novel genes encoding proteins such as source of immunodominant MHC-associated peptides (SIMP), TNF receptor-associated factor 2 binding protein (T2BP), poliovirus receptor-related protein 1 precursor, glycoprotein A repetitions predominant (GARP). The differential expression of seven immune genes, i.e. GARP, alpha-2-macroglobulin, MHC class I, C3, SIMP, T2BP, transferrin, as a result of infection was further confirmed by RT-PCR, with the up-regulation of alpha-2-macroglobulin, MHC class I, C3, SIMP and T2BP in the liver of infected fish, and down-regulation of SIMP in the gills of infected fish. The present study provides foundation for understanding grass carp immune response and candidate genes for further analysis.
Resumo:
BACKGROUND: We previously identified a panel of genes associated with outcome of ovarian cancer. The purpose of the current study was to assess whether variants in these genes correlated with ovarian cancer risk. METHODS AND FINDINGS: Women with and without invasive ovarian cancer (749 cases, 1,041 controls) were genotyped at 136 single nucleotide polymorphisms (SNPs) within 13 candidate genes. Risk was estimated for each SNP and for overall variation within each gene. At the gene-level, variation within MSL1 (male-specific lethal-1 homolog) was associated with risk of serous cancer (p = 0.03); haplotypes within PRPF31 (PRP31 pre-mRNA processing factor 31 homolog) were associated with risk of invasive disease (p = 0.03). MSL1 rs7211770 was associated with decreased risk of serous disease (OR 0.81, 95% CI 0.66-0.98; p = 0.03). SNPs in MFSD7, BTN3A3, ZNF200, PTPRS, and CCND1A were inversely associated with risk (p<0.05), and there was increased risk at HEXIM1 rs1053578 (p = 0.04, OR 1.40, 95% CI 1.02-1.91). CONCLUSIONS: Tumor studies can reveal novel genes worthy of follow-up for cancer susceptibility. Here, we found that inherited markers in the gene encoding MSL1, part of a complex that modifies the histone H4, may decrease risk of invasive serous ovarian cancer.
Resumo:
Objective: We tested the hypothesis that patients with difficult asthma have an increased frequency of certain genotypes that predispose them to asthma exacerbations and poor asthma control.
Methods: A total of 180 Caucasian children with confirmed asthma diagnosis were selected from two phenotypic groups; difficult (n = 112) versus mild/moderate asthma (n = 68) groups. All patients were screened for 19 polymorphisms in 9 candidate genes to evaluate their association with difficult asthma.
Key Results: The results indicated that LTA4H A-9188.G, TNFa G-308.A and IL-4Ra A1727.G polymorphisms were significantly associated with the development of difficult asthma in paediatric patients (p,0.001, p = 0.019 and p = 0.037, respectively). Haplotype analysis also revealed two haplotypes (ATA haplotype of IL-4Ra A1199.C, IL-4Ra T1570.C and IL- 4Ra A1727.G and CA haplotype of TNFa C-863.A and TNFa G-308.A polymorphisms) which were significantly associated with difficult asthma in children (p = 0.04 and p = 0.018, respectively).
Conclusions and Clinical Relevance: The study revealed multiple SNPs and haplotypes in LTA4H, TNFa and IL4-Ra genes which constitute risk factors for the development of difficult asthma in children. Of particular interest is the LTA4H A- 9188.G polymorphism which has been reported, for the first time, to have strong association with severe asthma in children. Our results suggest that screening for patients with this genetic marker could help characterise the heterogeneity of responses to leukotriene-modifying medications and, hence, facilitate targeting these therapies to the subset of patients who are most likely to gain benefit. ©2013 Almomani et al.
Resumo:
Catharanthus roseus is the sole biological source of the medicinal compounds vinblastine and vincristine. These chemotherapeutic compounds are produced in the aerial organs of the plant, however they accumulate in small amounts constituting only about 0.0002% of the fresh weight of the leaf. Their limited biological supply and high economical value makes its biosynthesis important to study. Vinblastine and vincristine are dimeric monoterpene indole alkaloids, which consists of two monomers vindoline and catharanthine. The monoterpene indole alkaloids (MIA's) contain a monoterpene moiety which is derived from the iridoid secologanin and an indole moiety tryptamine derived from the amino acid tryptophan. The biosynthesis of the monoterpene indole alkaloids has been localized to at least three cell types namely, the epidermis, the laticifer and the internal phloem assisted parenchyma. Carborundum abrasion (CA) technique was developed to selectively harvest epidermis enriched plant material. This technique can be used to harvest metabolites, protein or RNA. Sequencing of an expressed sequence tagged (EST) library from epidermis enriched mRNA demonstrated that this cell type is active in synthesizing a variety of secondary metabolites namely, flavonoids, lipids, triterpenes and monoterpene indole alkaloids. Virtually all of the known genes involved in monterpene indole alkaloid biosynthesis were sequenced from this library.This EST library is a source for many candidate genes involved in MIA biosynthesis. A contig derived from 12 EST's had high similarity (E'^') to a salicylic acid methyltransferase. Cloning and functional characterization of this gene revealed that it was the carboxyl methyltransferase imethyltransferase (LAMT). In planta characterization of LAMT revealed that it has a 10- fold enrichment in the leaf epidermis as compared to the whole leaf specific activity. Characterization of the recombinant enzyme revealed that vLAMT has a narrow substate specificity as it only accepts loganic acid (100%) and secologanic acid (10%) as substrates. rLAMT has a high Km value for its substrate loganic acid (14.76 mM) and shows strong product inhibition for loganin (Kj 215 |iM). The strong product inhibition and low affinity for its substrate may suggest why the iridoid moiety is the limiting factor in monoterpene indole alkaloid biosynthesis. Metabolite profiling of C. roseus organs shows that secologanin accumulates within these organs and constitutues 0.07- 0.45% of the fresh weight; however loganin does not accumulate within these organs suggesting that the product inhibition of loganin with LAMT is not physiologically relevant. The limiting factor to iridoid and MIA biosynthesis seems to be related to the spatial separation of secologanin and the MIA pathway, although secologanin is synthesized in the epidermis, only 2-5% of the total secologanin is found in the epidermis while the remaining secologanin is found within the leaf body inaccessable to alkaloid biosynthesis. These studies emphasize the biochemical specialization of the epidermis for the production of secondary metabolites. The epidermal cells synthesize metabolites that are sequestered within the plant and metabolites that are secreted to the leaf surface. The secreted metabolites comprise the epidermome, a layer separating the plant from its environment.
Resumo:
The monoterpenoid indole alkaloids (MIAs) of Madagascar periwinkle (Catharanthus roseus) are known to be among the most important source of natural drugs used in various cancer chemotherapies. MIAs are derived by combining the iridoid secologanin with tryptamine to form the central precursor strictosidine that is then converted to most known MIAs, such as catharanthine and vindoline that dimerize to form anticancer vinblastine and vincristine. While their assembly is still poorly understood, the complex multistep pathways involved occur in several specialized cell types within leaves that are regulated by developmental and environmental cues. The organization of MIA pathways is also coupled to secretory mechanisms that allow the accumulation of catharanthine in the waxy leaf surface, separated from vindoline found within leaf cells. While the spatial separation of catharanthine and vindoline provides an explanation for the low levels of dimeric MIAs found in the plants, the secretion of catharanthine to the leaf surface is shown to be part of plant defense mechanisms against fungal infection and insect herbivores. The transcriptomic databases of Catharanthus roseus and various MIA producing plants are facilitating bioinformatic approaches to identify novel MIA biosynthetic genes. Virus-induced gene silencing (VIGS) is being used to screen these candidate genes for their involvement in iridoid biosynthesis pathway, especially in the identification of 7-deoxyloganic acid 7-hydroxylase (CrDL7H) shown by the accumulation of its substrate, 7-deoxyloganic acid and decreased level of secologanin along with catharanthine and vindoline. VIGS can also confirm the biochemical function of genes being identified, such as in the glucosylation of 7-deoxyloganetic acid by CrUGT8 shown by decreased level of secologanin and MIAs within silenced plants. Silencing of other iridoid biosynthetic genes, loganic acid O-methyltransferase (LAMT) and secologanin synthase (SLS) also confirm the metabolic route for iridoid biosynthesis in planta through 7-deoxyloganic acid, loganic acid, and loganin intermediates. This route is validated by high substrate specificity of CrUGT8 for 7-deoxyloganetic acid and CrDL7H for 7-deoxyloganic acid. Further localization studies of CrUGT8 and CrDL7H also show that these genes are preferentially expressed within Catharanthus leaves rather than in epidermal cells where the last two steps of secologanin biosynthesis occur.
Resumo:
Genetic studies of autism spectrum conditions (ASC) have mostly focused on the "low functioning" severe clinical subgroup, treating it as a rare disorder. However, ASC is now thought to be relatively common ( approximately 1%), and representing one end of a quasi-normal distribution of autistic traits in the general population. Here we report a study of common genetic variation in candidate genes associated with autistic traits and Asperger syndrome (AS). We tested single nucleotide polymorphisms in 68 candidate genes in three functional groups (sex steroid synthesis/transport, neural connectivity, and social-emotional responsivity) in two experiments. These were (a) an association study of relevant behavioral traits (the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ)) in a population sample (n=349); and (b) a case-control association study on a sample of people with AS, a "high-functioning" subgroup of ASC (n=174). 27 genes showed a nominally significant association with autistic traits and/or ASC diagnosis. Of these, 19 genes showed nominally significant association with AQ/EQ. In the sex steroid group, this included ESR2 and CYP11B1. In the neural connectivity group, this included HOXA1, NTRK1, and NLGN4X. In the socio-responsivity behavior group, this included MAOB, AVPR1B, and WFS1. Fourteen genes showed nominally significant association with AS. In the sex steroid group, this included CYP17A1 and CYP19A1. In the socio-emotional behavior group, this included OXT. Six genes were nominally associated in both experiments, providing a partial replication. Eleven genes survived family wise error rate (FWER) correction using permutations across both experiments, which is greater than would be expected by chance. CYP11B1 and NTRK1 emerged as significantly associated genes in both experiments, after FWER correction (P<0.05). This is the first candidate-gene association study of AS and of autistic traits. The most promising candidate genes require independent replication and fine mapping.
Resumo:
There is a strong desire to exploit transcriptomics data from model species for the genetic improvement of non-model crops. Here, we use gene expression profiles from the commercial model Pinus taeda to identify candidate genes implicated in juvenile-mature wood transition in the non-model relative, P. sylvestris. Re-analysis of 'public domain' SAGE data from xylem tissues of P. taeda revealed 283 mature-abundant and 396 juvenile-abundant tags (P < 0.01), of which 70 and 137, respectively matched to genes with known function. Based on sequence similarity, we then isolated 16 putative homologues of genes that in P. taeda exhibited widest divergence in expression between juvenile and mature samples. Candidate expression levels in P. sylvestris were almost invariably differential between juvenile and mature woody tissue samples among two cohorts of five trees collected from the same seed source and selected for genetic uniformity by genetic distance analysis. However, the direction of differential expression was not always consistent with that described in the original P. taeda SAGE data. Correlation was observed between gene expression and juvenile-mature wood anatomical characteristics by OPLS analysis. Four candidates (alpha-tubulin, porin MIP1, lipid transfer protein and aquaporin like protein) apparently had greatest influence on the wood traits measured. Speculative function of these genes in relation to juvenile-mature wood transition is briefly explored. Thus, we demonstrate the feasibility of exploiting SAGE data from a model species to identify consistently differentially expressed candidates in a related non-model species.