994 resultados para calibration method
Resumo:
Bread is consumed worldwide by man, thus contributing to the regular ingestion of certain inorganic species such as chloride. It controls the blood pressure if associated to a sodium intake and may increase the incidence of stomach ulcer. Its routine control should thus be established by means of quick and low cost procedures. This work reports a double- channel flow injection analysis (FIA) system with a new chloride sensor for the analysis of bread. All solutions are prepared in water and necessary ionic strength adjustments are made on-line. The body of the indicating electrode is made from a silver needle of 0.8 mm i.d. with an external layer of silver chloride. These devices were constructed with different lengths. Electrodes of 1.0 to 3.0 cm presented better analytical performance. The calibration curves under optimum conditions displayed Nernstian behaviour, with average slopes of 56 mV decade-1, with sampling rates of 60 samples h-1. The method was applied to analyze several kinds of bread, namely pão de trigo, pão integral, pão de centeio, pão de mistura, broa de milho, pão sem sal, pão meio sal, pão-de-leite, and pão de água. The accuracy and precision of the potentiometric method were ascertained by comparison to a spectrophotometric method of continuous segmented flow. These methods were validated against ion-chromatography procedures.
Resumo:
In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.
Resumo:
For the purpose of research a large quantity of anti-measles IgG working reference serum was needed. A pool of sera from five teenagers was prepared and named Alexandre Herculano (AH). In order to calibrate the AH serum, 18 EIA assays were performed testing in parallel AH and the 2nd International Standard 1990, Anti-Measles Antibody, 66/202 (IS) in a range of dilutions (from 1/50 to 1/25600). A method which compared parallel lines resulting from the graphic representation of the results of laboratory tests was used to estimate the power of AH relative to IS. A computer programme written by one of the authors was used to analyze the data and make potency estimates. Another method of analysis was used, comparing logistic curves relating serum concentrations with optical density by EIA. For that purpose an existing computer programme (WRANL) was used. The potency of AH relative to IS, by either method, was estimated to be 2.4. As IS has 5000 milli international units (mIU) of anti-measles IgG per millilitre (ml), we concluded that AH has 12000 mIU/ml.
Resumo:
Esta dissertação descreve o desenvolvimento e avaliação de um procedimento de \Numerical Site Calibration" (NSC) para um Parque Eólico, situado a sul de Portugal, usando Dinâmica de Fluídos Computacional (CFD). O NSC encontra-se baseado no \Site Calibration" (SC), sendo este um método de medição padronizado pela Comissão Electrónica Internacional através da norma IEC 61400. Este método tem a finalidade de quantificar e reduzir os efeitos provocados pelo terreno e por possíveis obstáculos, na medição do desempenho energético das turbinas eólicas. Assim, no SC são realizadas medições em dois pontos, no mastro referência e no local da turbina (mastro temporário). No entanto, em Parques Eólicos já construídos, este método não é aplicável visto ser necessária a instalação de um mastro de medição no local da turbina e, por conseguinte, o procedimento adequado para estas circunstâncias é o NSC. O desenvolvimento deste método é feito por um código CFD, desenvolvido por uma equipa de investigação do Instituto Superior de Engenharia do Porto, designado de WINDIETM, usado extensivamente pela empresa Megajoule Inovação, Lda em aplicações de energia eólica em todo mundo. Este código é uma ferramenta para simulação de escoamentos tridimensionais em terrenos complexos. As simulações do escoamento são realizadas no regime transiente utilizando as equações de Navier-Stokes médias de Reynolds com aproximação de Bussinesq e o modelo de turbulência TKE 1.5. As condições fronteira são provenientes dos resultados de uma simulação realizada com Weather Research and Forecasting, WRF. Estas simulações dividem-se em dois grupos, um dos conjuntos de simulações utiliza o esquema convectivo Upwind e o outro utiliza o esquema convectivo de 4aordem. A análise deste método é realizada a partir da comparação dos dados obtidos nas simulações realizadas no código WINDIETM e a coleta de dados medidos durante o processo SC. Em suma, conclui-se que o WINDIETM e as suas configurações reproduzem bons resultados de calibração, ja que produzem erros globais na ordem de dois pontos percentuais em relação ao SC realizado para o mesmo local em estudo.
Resumo:
Oceans - San Diego, 2013
Resumo:
In this study a citrate-buffered version of QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for determination of 14 organochlorine pesticides (OCPs) residues in tamarind peel, fruit and commercial pulp was optimized using gas chromatography (GC) coupled with electron-capture detector (ECD) and confirmation by GC tandem mass spectrometry (GC–MS/MS). Five procedures were tested based on the original QuEChERS method. The best one was achieved with increased time in ultrasonic bath. For the extract clean-up, primary secondary amine (PSA), octadecyl-bonded silica (C18) and magnesium sulphate (MgSO4) were used as sorbents for tamarind fruit and commercial pulp and for peel was also added graphitized carbon black (GCB). The samples mass was optimized according to the best recoveries (1.0 g for peel and fruit; 0.5 g for pulp). The method results showed the matrix-matched calibration curve linearity was r2 > 0.99 for all target analytes in all samples. The overall average recoveries (spiked at 20, 40 and 60 μg kg−1) have been considered satisfactory presenting values between 70 and 115% with RSD of 2–15 % (n = 3) for all analytes, with the exception of HCB (in peel sample). The ranges of limits of detection (LOD) and quantification (LOQ) for OCPs were for peel (LOD: 8.0–21 μg kg−1; LOQ: 27–98 μg kg−1); for fruit (LOD: 4–10 μg kg−1; LOQ: 15–49 μg kg−1) and for commercial pulp (LOD: 2–5 μg kg−1; LOQ: 7–27 μg kg−1). The method was successfully applied in tamarind samples being considered a rapid, sensitive and reliable procedure.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A novel approach to measure carbon dioxide (CO2) in gaseous samples, based on a precise and accurate quantification by (13)CO2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable in the routine determination of CO2. The main drawback of the GC methods discussed in the literature for CO2 measurement is the lack of a specific internal standard necessary to perform quantification. CO2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ((13)CO2) on the basis of the stoichiometric formation of CO2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH(13)CO3). This method allows a precise measurement of CO2 concentration and was validated on various human postmortem gas samples in order to study its efficiency.
Resumo:
The sensitivity of altitudinal and latitudinal tree-line ecotones to climate change, particularly that of temperature, has received much attention. To improve our understanding of the factors affecting tree-line position, we used the spatially explicit dynamic forest model TreeMig. Although well-suited because of its landscape dynamics functions, TreeMig features a parabolic temperature growth response curve, which has recently been questioned. and the species parameters are not specifically calibrated for cold temperatures. Our main goals were to improve the theoretical basis of the temperature growth response curve in the model and develop a method for deriving that curve's parameters from tree-ring data. We replaced the parabola with an asymptotic curve, calibrated for the main species at the subalpine (Swiss Alps: Pinus cembra, Larix decidua, Picea abies) and boreal (Fennoscandia: Pinus sylvestris, Betula pubescens, P. abies) tree-lines. After fitting new parameters, the growth curve matched observed tree-ring widths better. For the subalpine species, the minimum degree-day sum allowing, growth (kDDMin) was lowered by around 100 degree-days; in the case of Larix, the maximum potential ring-width was increased to 5.19 mm. At the boreal tree-line, the kDDMin for P. sylvestris was lowered by 210 degree-days and its maximum ring-width increased to 2.943 mm; for Betula (new in the model) kDDMin was set to 325 degree-days and the maximum ring-width to 2.51 mm; the values from the only boreal sample site for Picea were similar to the subalpine ones, so the same parameters were used. However, adjusting the growth response alone did not improve the model's output concerning species' distributions and their relative importance at tree-line. Minimum winter temperature (MinWiT, mean of the coldest winter month), which controls seedling establishment in TreeMig, proved more important for determining distribution. Picea, P. sylvestris and Betula did not previously have minimum winter temperature limits, so these values were set to the 95th percentile of each species' coldest MinWiT site (respectively -7, -11, -13). In a case study for the Alps, the original and newly calibrated versions of TreeMig were compared with biomass data from the National Forest Inventor), (NFI). Both models gave similar, reasonably realistic results. In conclusion, this method of deriving temperature responses from tree-rings works well. However, regeneration and its underlying factors seem more important for controlling species' distributions than previously thought. More research on regeneration ecology, especially at the upper limit of forests. is needed to improve predictions of tree-line responses to climate change further.
Resumo:
Among the various determinants of treatment response, the achievement of sufficient blood levels is essential for curing malaria. For helping us at improving our current understanding of antimalarial drugs pharmacokinetics, efficacy and toxicity, we have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 200mul of plasma for the simultaneous determination of 14 antimalarial drugs and their metabolites which are the components of the current first-line combination treatments for malaria (artemether, artesunate, dihydroartemisinin, amodiaquine, N-desethyl-amodiaquine, lumefantrine, desbutyl-lumefantrine, piperaquine, pyronaridine, mefloquine, chloroquine, quinine, pyrimethamine and sulfadoxine). Plasma is purified by a combination of protein precipitation, evaporation and reconstitution in methanol/ammonium formate 20mM (pH 4.0) 1:1. Reverse-phase chromatographic separation of antimalarial drugs is obtained using a gradient elution of 20mM ammonium formate and acetonitrile both containing 0.5% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 21min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effect variability, overall process efficiency, standard addition experiments as well as antimalarials short- and long-term stability in plasma. The reactivity of endoperoxide-containing antimalarials in the presence of hemolysis was tested both in vitro and on malaria patients samples. With this method, signal intensity of artemisinin decreased by about 20% in the presence of 0.2% hemolysed red-blood cells in plasma, whereas its derivatives were essentially not affected. The method is precise (inter-day CV%: 3.1-12.6%) and sensitive (lower limits of quantification 0.15-3.0 and 0.75-5ng/ml for basic/neutral antimalarials and artemisinin derivatives, respectively). This is the first broad-range LC-MS/MS assay covering the currently in-use antimalarials. It is an improvement over previous methods in terms of convenience (a single extraction procedure for 14 major antimalarials and metabolites reducing significantly the analytical time), sensitivity, selectivity and throughput. While its main limitation is investment costs for the equipment, plasma samples can be collected in the field and kept at 4 degrees C for up to 48h before storage at -80 degrees C. It is suited to detecting the presence of drug in subjects for screening purposes and quantifying drug exposure after treatment. It may contribute to filling the current knowledge gaps in the pharmacokinetics/pharmacodynamics relationships of antimalarials and better define the therapeutic dose ranges in different patient populations.
Resumo:
The aim of our study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable for the routine determination of blood CO concentration in forensic toxicology laboratories. The main drawback of the GC/MS methods discussed in literature for CO measurement is the absence of a specific CO internal standard necessary for performing quantification. Even if stable isotope of CO is commercially available in the gaseous state, it is essential to develop a safer method to limit the manipulation of gaseous CO and to precisely control the injected amount of CO for spiking and calibration. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in a vial in situ, an internal labeled standard gas ((13)CO) formed by the reaction of labeled formic acid formic acid (H(13)COOH) with sulfuric acid. As sulfuric acid can also be employed to liberate the CO reagent from whole blood, the procedure allows for the liberation of CO simultaneously with the generation of (13)CO. This method allows for precise measurement of blood CO concentrations from a small amount of blood (10 μL). Finally, this method was applied to measure the CO concentration of intoxicated human blood samples from autopsies.
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 differentcompositional datasets and modelled the first canonical variable using a segmented regression modelsolely based on an observation about the scatter plots. In this paper, multiple linear regressions areapplied to different datasets to confirm the validity of our proposed model. In addition to dating theunknown tephras by calibration as discussed previously, another method of mapping the unknown tephrasinto samples of the reference set or missing samples in between consecutive reference samples isproposed. The application of these methodologies is demonstrated with both simulated and real datasets.This new proposed methodology provides an alternative, more acceptable approach for geologists as theirfocus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age ofunknown tephra.Kew words: Tephrochronology; Segmented regression
Resumo:
Measurement of three-dimensional (3D) knee joint angle outside a laboratory is of benefit in clinical examination and therapeutic treatment comparison. Although several motion capture devices exist, there is a need for an ambulatory system that could be used in routine practice. Up-to-date, inertial measurement units (IMUs) have proven to be suitable for unconstrained measurement of knee joint differential orientation. Nevertheless, this differential orientation should be converted into three reliable and clinically interpretable angles. Thus, the aim of this study was to propose a new calibration procedure adapted for the joint coordinate system (JCS), which required only IMUs data. The repeatability of the calibration procedure, as well as the errors in the measurement of 3D knee angle during gait in comparison to a reference system were assessed on eight healthy subjects. The new procedure relying on active and passive movements reported a high repeatability of the mean values (offset<1 degrees) and angular patterns (SD<0.3 degrees and CMC>0.9). In comparison to the reference system, this functional procedure showed high precision (SD<2 degrees and CC>0.75) and moderate accuracy (between 4.0 degrees and 8.1 degrees) for the three knee angle. The combination of the inertial-based system with the functional calibration procedure proposed here resulted in a promising tool for the measurement of 3D knee joint angle. Moreover, this method could be adapted to measure other complex joint, such as ankle or elbow.
Resumo:
An adaptation technique based on the synoptic atmospheric circulation to forecast local precipitation, namely the analogue method, has been implemented for the western Swiss Alps. During the calibration procedure, relevance maps were established for the geopotential height data. These maps highlight the locations were the synoptic circulation was found of interest for the precipitation forecasting at two rain gauge stations (Binn and Les Marécottes) that are located both in the alpine Rhône catchment, at a distance of about 100 km from each other. These two stations are sensitive to different atmospheric circulations. We have observed that the most relevant data for the analogue method can be found where specific atmospheric circulation patterns appear concomitantly with heavy precipitation events. Those skilled regions are coherent with the atmospheric flows illustrated, for example, by means of the back trajectories of air masses. Indeed, the circulation recurrently diverges from the climatology during days with strong precipitation on the southern part of the alpine Rhône catchment. We have found that for over 152 days with precipitation amount above 50 mm at the Binn station, only 3 did not show a trajectory of a southerly flow, meaning that such a circulation was present for 98% of the events. Time evolution of the relevance maps confirms that the atmospheric circulation variables have significantly better forecasting skills close to the precipitation period, and that it seems pointless for the analogue method to consider circulation information days before a precipitation event as a primary predictor. Even though the occurrence of some critical circulation patterns leading to heavy precipitation events can be detected by precursors at remote locations and 1 week ahead (Grazzini, 2007; Martius et al., 2008), time extrapolation by the analogue method seems to be rather poor. This would suggest, in accordance with previous studies (Obled et al., 2002; Bontron and Obled, 2005), that time extrapolation should be done by the Global Circulation Model, which can process atmospheric variables that can be used by the adaptation method.
Resumo:
A new statistical parallax method using the Maximum Likelihood principle is presented, allowing the simultaneous determination of a luminosity calibration, kinematic characteristics and spatial distribution of a given sample. This method has been developed for the exploitation of the Hipparcos data and presents several improvements with respect to the previous ones: the effects of the selection of the sample, the observational errors, the galactic rotation and the interstellar absorption are taken into account as an intrinsic part of the formulation (as opposed to external corrections). Furthermore, the method is able to identify and characterize physically distinct groups in inhomogeneous samples, thus avoiding biases due to unidentified components. Moreover, the implementation used by the authors is based on the extensive use of numerical methods, so avoiding the need for simplification of the equations and thus the bias they could introduce. Several examples of application using simulated samples are presented, to be followed by applications to real samples in forthcoming articles.