422 resultados para brainstem
Resumo:
OBJECTIVE: To identify whether the use of a notch filter significantly affects the morphology or characteristics of the newborn auditory brainstem response (ABR) waveform and so inform future guidance for clinical practice. DESIGN: Waveforms with and without the application of a notch filter were recorded from babies undergoing routine ABR tests at 4000, 1000 and 500 Hz. Any change in response morphology was judged subjectively. Response latency, amplitude, and measurements of response quality and residual noise were noted. An ABR simulator was also used to assess the effect of notch filtering in conditions of low and high mains interference. RESULTS: The use of a notch filter changed waveform morphology for 500 Hz stimuli only in 15% of tests in newborns. Residual noise was lower when 4000 Hz stimuli were used. Response latency, amplitude, and quality were unaffected regardless of stimulus frequency. Tests with the ABR stimulator suggest that these findings can be extended to conditions of high level mains interference. CONCLUSIONS: A notch filter should be avoided when testing at 500 Hz, but at higher frequencies appears to carry no penalty.
Resumo:
The aim was to describe the outcome of neonatal hearing screening (NHS) and audiological diagnosis in neonates in the NICU. The sample was divided into Group I: neonates who underwent NHS in one step and Group II: neonates who underwent a test and retest NHS. NHS procedure was automated auditory brainstem response. NHS was performed in 82.1% of surviving neonates. For GI, referral rate was 18.6% and false-positive was 62.2% (normal hearing in the diagnostic stage). In GII, with retest, referral rate dropped to 4.1% and false-positive to 12.5%. Sensorineural hearing loss was found in 13.2% of infants and conductive in 26.4% of cases. There was one case of auditory neuropathy spectrum (1.9%). Dropout rate in whole process was 21.7% for GI and 24.03% for GII. We concluded that it was not possible to perform universal NHS in the studied sample or, in many cases, to apply it within the first month of life. Retest reduced failure and false-positive rate and did not increase evasion, indicating that it is a recommendable step in NHS programs in the NICU. The incidence of hearing loss was 2.9%, considering sensorineural hearing loss (0.91%), conductive (1.83%) and auditory neuropathy spectrum (0.19%).
Resumo:
Basilar invagination (BI) is a congenital craniocervical junction (CCJ) anomaly represented by a prolapsed spine into the skull-base that can result in severe neurological impairment. In this paper, we retrospective evaluate the surgical treatment of 26 patients surgically treated for symptomatic BI. BI was classified according to instability and neural abnormalities findings. Clinical outcome was evaluated using the Nürick grade system. A total of 26 patients were included in this paper. Their age ranged from 15 to 67 years old (mean 38). Of which, 10 patients were male (38%) and 16 (62%) were female. All patients had some degree of tonsillar herniation, with 25 patients treated with foramen magnum decompression. Nine patients required a craniocervical fixation. Six patients had undergone prior surgery and required a new surgical procedure for progression of neurological symptoms associated with new compression or instability. Most of patients with neurological symptoms secondary to brainstem compression had some improvement during the follow-up. There was mortality in this series, 1 month after surgery, associated with a late removal of the tracheal cannula. Management of BI requires can provide improvements in neurological outcomes, but requires analysis of the neural and bony anatomy of the CCJ, as well as occult instability. The complexity and heterogeneous presentation requires attention to occult instability on examination and attention to airway problems secondary to concomitant facial malformations.
Resumo:
Primary craniocervical dystonia (CCD) is generally attributed to functional abnormalities in the cortico-striato-pallido-thalamocortical loops, but cerebellar pathways have also been implicated in neuroimaging studies. Hence, our purpose was to perform a volumetric evaluation of the infratentorial structures in CCD. We compared 35 DYT1/DYT6 negative patients with CCD and 35 healthy controls. Cerebellar volume was evaluated using manual volumetry (DISPLAY software) and infratentorial volume by voxel based morphometry of gray matter (GM) segments derived from T1 weighted 3 T MRI using the SUIT tool (SPM8/Dartel). We used t-tests to compare infratentorial volumes between groups. Cerebellar volume was (1.14 ± 0.17) × 10(2) cm(3) for controls and (1.13 ± 0.14) × 10(2) cm(3) for patients; p = 0.74. VBM demonstrated GM increase in the left I-IV cerebellar lobules and GM decrease in the left lobules VI and Crus I and in the right lobules VI, Crus I and VIIIb. In a secondary analysis, VBM demonstrated GM increase also in the brainstem, mostly in the pons. While gray matter increase is observed in the anterior lobe of the cerebellum and in the brainstem, the atrophy is concentrated in the posterior lobe of the cerebellum, demonstrating a differential pattern of infratentorial involvement in CCD. This study shows subtle structural abnormalities of the cerebellum and brainstem in primary CCD.
Resumo:
Machado-Joseph disease (MJD/SCA3) is the most frequent spinocerebellar ataxia, characterized by brainstem, basal ganglia and cerebellar damage. Few magnetic resonance imaging based studies have investigated damage in the cerebral cortex. The objective was to determine whether patients with MJD/SCA3 have cerebral cortex atrophy, to identify regions more susceptible to damage and to look for the clinical and neuropsychological correlates of such lesions. Forty-nine patients with MJD/SCA3 (mean age 47.7 ± 13.0 years, 27 men) and 49 matched healthy controls were enrolled. All subjects underwent magnetic resonance imaging scans in a 3 T device, and three-dimensional T1 images were used for volumetric analyses. Measurement of cortical thickness and volume was performed using the FreeSurfer software. Groups were compared using ancova with age, gender and estimated intracranial volume as covariates, and a general linear model was used to assess correlations between atrophy and clinical variables. Mean CAG expansion, Scale for Assessment and Rating of Ataxia (SARA) score and age at onset were 72.1 ± 4.2, 14.7 ± 7.3 and 37.5 ± 12.5 years, respectively. The main findings were (i) bilateral paracentral cortex atrophy, as well as the caudal middle frontal gyrus, superior and transverse temporal gyri, and lateral occipital cortex in the left hemisphere and supramarginal gyrus in the right hemisphere; (ii) volumetric reduction of basal ganglia and hippocampi; (iii) a significant correlation between SARA and brainstem and precentral gyrus atrophy. Furthermore, some of the affected cortical regions showed significant correlations with neuropsychological data. Patients with MJD/SCA3 have widespread cortical and subcortical atrophy. These structural findings correlate with clinical manifestations of the disease, which support the concept that cognitive/motor impairment and cerebral damage are related in disease.
Resumo:
Previous studies have shown that a particular site in the periaqueductal gray (PAG), the rostrolateral PAG, influences the motivation drive to forage or hunt. To have a deeper understanding on the putative paths involved in the decision-making process between foraging, hunting, and other behavioral responses, in the present investigation, we carried out a systematic analysis of the neural inputs to the rostrolateral PAG (rlPAG), using Fluorogold as a retrograde tracer. According to the present findings, the rlPAG appears to be importantly driven by medial prefrontal cortical areas involved in controlling attention-related and decision-making processes. Moreover, the rlPAG also receives a wealth of information from different amygdalar, hypothalamic, and brainstem sites related to feeding, drinking, or hunting behavioral responses. Therefore, this unique combination of afferent connections puts the rlPAG in a privileged position to influence the motivation drive to choose whether hunting and foraging would be the most appropriate adaptive responses. Copyright (C) 2009 Sandra Regina Mota-Ortiz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Fluorescent indication that nitric oxide formation in NTS neurons is modulated by glutamate and GABA
Resumo:
Nitric oxide (NO) in NTS plays an important role in regulating autonomic function to the cardiovascular system. Using the fluorescent dye DAF-2 DA, we evaluated the NO concentration in NTS. Brainstem slices of rats were loaded with DAF-2 DA, washed, fixed in paraformaldehyde and examined under fluorescent light. In different experimental groups, NTS slices were pre-incubated with 1 mM L-NAME (a non-selective NOS inhibitor), 1 MM D-NAME (an inactive enantiomere of L-NAME), 1 mM kynurenic acid (a nonselective ionotropic receptors antagonist) or 20 mu M bicuculline (a selective GABA(A) receptors antagonist) before and during DAF-2 DA loading. Images were acquired using a confocal microscope and the intensity of fluorescence was quantified in three antero-posterior NTS regions. In addition, slices previously loaded with DAF-2 DA were incubated with NeuN or GFAP antibody. A semi-quantitative analysis of the fluorescence intensity showed that the basal NO concentration was similar in all antero-posterior aspects of the NTS (rostral intermediate, 15.5 +/- 0.8 AU: caudal intermediate, 13.2 +/- 1.4 AU; caudal commissural, 13.8 +/- 1.4 AU, n = 10). In addition, the inhibition of NOS and the antagonism of glutamatergic receptors decreased the NO fluorescence in the NTS. On the other hand, D-NAME did not affect the NO fluorescence and the antagonism of GABAA receptors increased the NO fluorescence in the NTS. It is important to note that the fluorescence for NO was detected mainly in neurons. These data show that the fluorescence observed after NTS loading with DAF-2 DA is a result of NO present in the NTS and support the concept that NTS neurons have basal NO production which is modulated by L-glutamate and GABA. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Real-time Taqman(TM) RT-PCR was used to make quantitative comparisons of the levels of PrRP mRNA expression in micropunch brain samples from rats at different stages of the oestrous cycle and in lactation. The nucleus of the solitary tract and ventrolateral reticular nuclei of the medulla oblongata contained significantly (P < 0.05) greater levels of PrRP mRNA than any hypothalamic region. Within the hypothalamus, the highest level of PrRP expression was localised to the dorsomedial aspect of the ventromedial hypothalamus. All other hypothalamic regions exhibited significantly (P < 0.05) lower levels of expression, including the rostral and caudal dorsomedial hypothalamus. Very low levels of PrRP expression were observed in the arcuate nucleus, paraventricular nucleus, medial preoptic nucleus and ventrolateral aspect of the ventromedial hypothalamus. No significant changes in PrRP expression were noted in any sampled region between proestrus, oestrus or dioestrus. Similarly, PrRP expression in hypothalamic regions did not differ between lactating and non-lactating (dioestrous) animals. During validation of RT-PCR techniques we cloned and sequenced a novel splice variant of PrRP from the hypothalamus. This variant arises from alternative splicing of the donor site within exon 2, resulting in an insert of 64 base pairs and shift in the-codon:reading frame with the introduction of an early stop codon. In the hypothalamus and brainstem, mRNA expression of the variant was restricted to regions that expressed PrRP. These results suggest that PrRP expression in the hypothalamus may be more Widespread than previously reported. However, the relatively low level of PrRP in the hypothalamus and the lack of significant changes in expression during the oestrous cycle and lactation provides further evidence that PrRP is unlikely to be involved in the regulation of prolactin, secretion. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Cytosolic sulfotransferases are believed to play a role in the neuromodulation of certain neurotransmitters and drugs. To date, four cytosolic sulfotransferases have been shown to be expressed in human brain. Recently, a novel human brain sulfotransferase has been identified and characterized, although its role and localization in the brain are unknown. Here we present the first immunohistochemical (IHC) localization of SULT4A1 in human brain using an affinity-purified polyclonal antibody raised against recombinant human SULT4A1. These results are supported and supplemented by the IHC localization of SULT4A1 in rat brain. In both human and rat brains, strong reactivity was found in several brain regions, including cerebral cortex, cerebellum, pituitary, and brainstem. Specific signal was entirely absent on sections for which preimmune serum from the corresponding animal, processed in the same way as the postimmune serum, was used in the primary screen. The findings from this study may assist in determining the physiological role of this SULT isoform.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of auditory information, but it is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Functional evidence relating the IC to motor behavior derives from experiments showing that activation of the IC by electrical stimulation or excitatory amino acid microinjection causes freezing, escape-like behavior, and immobility. However, the nature of this immobility is still unclear. The present study examined the influence of excitatory amino acid-mediated mechanisms in the IC on the catalepsy induced by the dopamine receptor blocker haloperidol administered systemically (1 or 0.5 mg/kg) in rats. Haloperidol-induced catalepsy was challenged with prior intracollicular microinjections of glutamate NMDA receptor antagonists, MK-801 (15 or 30 mmol/0.5 mu l) and AP7 (10 or 20 nmol/0.5 mu l), or of the NMDA receptor agonist N-methyl-D-aspartate (NMDA, 20 or 30 nmol/0.5 mu l). The results showed that intracollicular microinjection of MK-801 and AP7 previous to systemic injections of haloperidol significantly attenuated the catalepsy, as indicated by a reduced latency to step down from a horizontal bar. Accordingly, intracollicular microinjection of NMDA increased the latency to step down the bar. These findings suggest that glutamate-mediated mechanisms in the neural circuits at the IC level influence haloperidol-induced catalepsy and participate in the regulation of motor activity. (C) 2010 Published by Elsevier B.V.
Resumo:
The inferior colliculus (IC) together with the dorsal periaqueductal gray (dPAG), the amygdala and the medial hypothalamus make part of the brain aversion system, which has mainly been related to the organization of unconditioned fear. However, the involvement of the IC and dPAG in the conditioned fear is still unclear. It is certain that GABA has a regulatory role on the aversive states generated and elaborated in these midbrain structures. In this study, we evaluated the effects of injections of the GABA-A receptor agonist muscimol (1.0 and 2.0 nmol/0.2 mu L) into the IC or dPAG on the freezing and fear-potentiated startle (FPS) responses of rats submitted to a context fear conditioning. Intra-IC injections of muscimol did not cause any significant effect on the FPS or conditioned freezing but enhanced the startle reflex in non-conditioned animals. In contrast, intra-dPAG injections of muscimol caused significant reduction in FPS and conditioned freezing without changing the startle reflex in non-conditioned animals. Thus, intra-dPAG injections of muscimol produced the expected inhibitory effects on the anxiety-related responses, the FPS and the freezing whereas these injections into the IC produced quite opposite effects suggesting that descending inhibitory pathways from the IC, probably mediated by GABA-A mechanisms, exert a regulatory role on the lower brainstem circuits responsible for the startle reflex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Withdrawal from morphine leads to the appearance of extreme anxiety accompanied of several physical disturbances, most of them linked to the activation of brainstem regions such as the locus coeruleus, ventral tegmental area, hypothalamic nuclei and periaqueductal grey (PAG). As anxiety remains one of the main components of morphine withdrawal the present study aimed to evaluating the influence of the dorsal aspects of the PAG on the production of this state, since this structure is well-known to be involved in defensive behaviour elicited by anxiety-evoking stimuli. Different groups of animals were submitted to 10 days of i.p. morphine injections, challenged 2 h after with an i.p. injection of naloxone (0.1 mg/kg), and submitted to the plus-maze, open-field and light-dark transition tests. The effects of morphine withdrawal on anxiety-induced Fos immunolabelling were evaluated in four animals that passed by the light-dark transition test randomly chosen for Fos-protein analysis. Besides the PAG, Fos neural expression was conducted in other brain regions involved in the expression of anxiety-related behaviours. Our results showed that morphine withdrawn rats presented enhanced anxiety accompanied of few somatic symptoms. Increased Fos immunolabelling was noted in brain regions well-known to modulate these states as the prelimbic cortex, nucleus accumbens, amygdala and paraventricular hypothalamus. Increased Fos labelling was also observed in the ventral and dorsal aspects of the PAG, a region involved in anxiety-related processes suggesting that this region could be a common neural substrate enlisted during anxiety evoked by dangerous stimuli as well as those elicited by opiate withdrawal. (c) 2008 Elsevier Inc. All rights reserved,
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of acoustic stimuli, being in a position to send auditory information to motor centers that participate in behaviors such as prey catching and predators` avoidance The role of the central nucleus of the IC (CIC) on fear and anxiety has been suggested on the basis that rats are able to engage in tasks to decrease the aversiveness of CIC stimulation, increased Fos immunolabeling during diverse aversive states and increased CIC auditory evoked potentials (AEP) induced by conditioned fear stimuli Additionally it was shown that brainstem AEP, represented by wave V, for which the main generator is the IC, is increased during experimentally induced anxiety Rats segregated according to their low or high emotional reactivity have been used as an important tool in the study of fear and anxiety The IC contains a high density of GABA receptors Since the efficacy of an anxiolytic compound is a function of the animal`s anxiety level, it is possible that GABA-benzodiazepine (Bzp) agents affect LA and HA animals differently In this study we investigated the GABA-Bzp influence on the modulation of AEP in rats with low (LA) or high-anxiety (HA) levels, as assessed by the elevated plus maze test (EPM) GABA-Bzp modulation on the unconditioned AEP response was analyzed by using intra CIC injections (0 2 mu l) of the GABA-Bzp agonists muscimol (121 ng) and diazepam (30 mu g) or the GABA inhibitors bicuculline (10 ng) and semicarbazide (7 mu g) In a second experiment, we evaluate the effects of contextual aversive conditioning on AEP using foot shocks as unconditioned stimuli On the unconditioned fear paradigm GABA inhibition in creased AEP in LA rats and decreases this measure in HA counterparts Muscimol was effective in reducing AEP in both LA and HA rats Contextual fear stimuli increased the magnitude of AEP In spite of no effect obtained with diazepam in LA rats the drug inhibited AEP in HA animals The specificity of the regulatory mechanisms mediated by GABA Bzp for the ascending neurocircuits responsible for the acquisition of aversive information in LA and HA animals shed light on the processing of sensory information underlying the generation of defensive reactions (C) 2010 IBRO Published by Elsevier Ltd All rights reserved
Resumo:
Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.