961 resultados para bovine embryo
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
With the purpose of eliciting a superovulatory response, 12 adult nulliparous Boer goat does were actively immunized against a recombinant a-subunit of ovine inhibin (roIHN-alpha; two injections of 100 mg 4 weeks apart). Another 12 control Boer goat does were treated with physiological saline and acted as controls. One year later the immunized animals were boostered by the administration of another dose (100 mg) of the immunogen. Following treatment, blood samples were collected twice weekly for the periods of 16 and 12 weeks, respectively, to monitor the inhibin binding ability with the aid of a radio-tracer binding assay. Throughout the experiment, estrus detection was conducted twice daily with the aid of an aproned intact buck. From the first day after treatment to 48 h after standing estrus, ovarian activity was monitored daily by transrectal ultrasonography. On alternate estrous cycles, does were mated and 6 days later flushed transcervically to recover embryos. All goats treated with the roIHN-alpha produced antibodies reactive to the native bovine inhibin tracer-the titre increasing from 2.9 +/- 0.4 to a maximum of 21.9 +/- 2.9% binding after the second injection. The antibody titre gradually subsided over the next 16 weeks. The booster injection restored an elevated antibody titre (11.7 +/- 0.4%), which was maintained until the end of the sampling period 12 weeks later. In the control goats only trace amounts of antibody were recorded throughout the trial. In the roIHN-alpha-immunized goats the number of follicles reaching a diameter of > 4 mm was 14.6 +/- 1.2 per doe. A positive correlation was recorded between the follicle number and antibody titre (r=0.61; P < 0.01). The number of follicles ovulating per doe (6.9 +/- 0.7) followed the same tendency-however, the proportion decreased with increasing follicle numbers. A relatively weak correlation was recorded between the inhibin binding ability and number of ovulations (r=0.27; P < 0.05). In the control goats the majority (92%) of follicles exceeding 4 mm in diameter ovulated (2.5 +/- 0.1 follicles/doe). Embryo collection proved unsatisfactory (42% versus 39% recovery for immunized and control animals, respectively)-presumably because the uterine lumen of the nulliparous does was too narrow to permit effective flushing. In the group of immunized goats the occurrence of short estrous cycles (< 15 days) recorded was 34% versus only 6% in the controls. Overall, immunization of goats against roIHN-alpha led to an almost six-fold increase in number of ovarian follicles, a three-fold increase in ovulations and, despite the low recovery rate, a more than three-fold increase in ova or embryos recovered. It may be concluded that treatment of female goats with roIHN-alpha leads to an inhibin antibody response, accompanied by enhanced ovarian activity. The response was, however, accompanied by a large proportion of retained follicles and a high incidence of short estrous cycles. These problems need to be further investigated before rendering the method fit for application in embryo transfer programs in goats. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ovaries were collected over a period of two years from heifers slaughtered at under 30 months of age and used to harvest 1757 oocytes. After in vitro maturation, fertilisation and culture, the proportions of oocytes and cleaved embryos that developed to blastocysts were significantly higher (P < 0.01) in the autumn, from September to November, than in the spring, from March to May. In contrast, embryo development, as assessed by oocytes that developed to eight or more cells and blastocysts, was lowest (P < 0.01) in the spring. These results were consistent during the two-year study, indicating a seasonal fluctuation in oocyte competence.
Resumo:
The study is based on 141 pregnant Bos indicus cows, from days 20 to 70 post-insemination. First, special attention was given to the macroscopically observable phenomena of attachment of the conceptus to the uterus, i.e. the implantation, from about days 20 to 30 post-insemination up to day 70, and placentome development by growth, vascularization and increase in the number of cotyledons opposite to the endometrial caruncles. Secondly, as for the conceptuses, semiquantitative, statistical analyses were performed of the lengths of chorio-allantois, amnion and yolk sac; and the different parts of the centre and two extremes of the yolk sacs were also analysed. Thirdly, the embryos/foetuses corresponding to their membranes were measured by their greatest length and by weight, and described by the appearance of external developmental phenomena during the investigated period like neurulation, somites, branchial arcs, brain vesicles, limb buds, C-form, pigmented eye and facial grooves. In conclusion, all the data collected in this study from days 20 to 70 of bovine pregnancy were compared extensively with corresponding data of the literature. This resulted in an `embryo/foetal age-scale`, which has extended the data in the literature by covering the first 8 to 70 days of pregnancy. This age-scale of early bovine intrauterine development provides model for studies, even when using slaughtered cows without distinct knowledge of insemination or fertilization time, through macroscopic techniques. This distinctly facilitates research into the cow, which is now being widely used as `an experimental animal` for testing new techniques of reproduction like in vitro fertilization, embryo transfer and cloning.
Resumo:
Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.
Resumo:
The extensive replication of mitochondria during oogenesis and the wide variability in mitochondrial DNA ( mtDNA) copy numbers present in fully grown oocytes indicate that mtDNA amount may play an important role during early embryogenesis. Using bovine oocytes derived from follicles of different sizes to study the influence of mtDNA content on development, we showed that oocytes obtained from small follicles, known to be less competent in developing into blastocysts, contain less mtDNA than those originating from larger follicles. However, because of the high variability in copy number, a more accurate approach was examined in which parthenogenetic one-cell embryos were biopsied to measure their mtDNA content and then cultured to assess development capacity. Contrasting with previous findings, mtDNA copy number in biopsies was not different between competent and incompetent embryos, indicating that mtDNA content is not related to early developmental competence. To further examine the importance of mtDNA on development, one-cell embryos were partially depleted of their mtDNA (64% +/- 4.1% less) by centrifugation followed by the removal of the mitochondrial-enriched cytoplasmic fraction. Surprisingly, depleted embryos developed normally into blastocysts, which contained mtDNA copy numbers similar to nonmanipulated controls. Development in depleted embryos was accompanied by an increase in the expression of genes (TFAM and NRF1) controlling mtDNA replication and transcription, indicating an intrinsic ability to restore the content of mtDNA at the blastocyst stage. Therefore, we concluded that competent bovine embryos are able to regulate their mtDNA content at the blastocyst stage regardless of the copy numbers accumulated during oogenesis.
Resumo:
Objectives: Asynchrony between nuclear and cytoplasmic maturation, and possibly damage to the oocyte meiotic spindle, limits the application of in vitro maturation (IVM) in assisted reproduction. Several studies have suggested that Prematuration with meiosis blockers may improve oocyte quality after IVM, favoring early embryogenesis. Thus, we investigated the effect of Prematuration with the nuclear maturation inhibitor butyrolactone I (BLI) on the meiotic spindle and chromosomal configuration of bovine oocytes. Study design: Immature oocytes obtained from cows slaughtered in a slaughterhouse (n = 840) were divided into the following groups: (1) control (n = 325), submitted only to IVM in TCM199 for 24 h; (2) BLI 18 h (n = 208) submitted to meiotic blockage with 100 mu M BLI for 24 h (Prematuration) and then induction of IVM in TCM199 for 18 h; and (3) BLI 24 h (n = 307), pre-matured with 100 mu m BLI for 24 h followed by 24 h of IVM in TCM199. The oocytes were then fixed, stained by immunofluorescence for morphological visualization of both microtubules and chromatin, and evaluated. Results: Meiotic arrest occurred in 90.2% of the oocytes cultured with BLI. Maturation rates were similar for all groups (80.3%, 73.6% and 82.7% for the control, BLI 18 h and BLI 24 h groups, respectively). We observed 81.3% normal oocytes in metaphase II in the control group, and 80.0% and 81.2% in the BLI 18 h and BLI 24 h groups, respectively. The incidence of meiotic anomalies did not differ between groups (18.7%, 20.0% and 18.8% for the control, BLI 18 h and BLI 24 h, respectively). Conclusion: Prematuration with butyrolactone I reversibly arrests meiosis without damaging the meiotic spindle or the chromosome distribution of bovine oocytes after in vitro maturation. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The mechanisms controlling the outcome of donor cell-derived mitochondrial DNA (mtDNA) in cloned animals remain largely unknown. This research was designed to investigate the kinetics of somatic and embryonic mtDNA in reconstructed bovine embryos during preimplantation development, as well as in cloned animals. The experiment involved two different procedures of embryo reconstruction and their evaluation at five distinct phases of embryo development to measure the proportion of donor cell mtDNA (Bos indicus), as well as the segregation of this mtDNA during cleavage. The ratio of donor cell (B. indicus) to host oocyte (B. taurus) mtDNA (heteroplasmy) from blastomere- (NT-B) and fibroblast- (NT-F) reconstructed embryos was estimated using an allele-specific PCR with fluorochrome-stained specific primers in each sampled blastomere, in whole blastocysts, and in the tissues of a fibroblast-derived newborn clone. NT-B zygotes and blastocysts show similar levels of heteroplasmy (11.0% and 14.0%, respectively), despite a significant decrease at the 9-16 cell stage (5.8%; p < 0.05). Heteroplasmy levels in NT-F reconstructed zygotes, however, increased from an initial low level (4.7%), to 12.9% (p < 0.05) at the 9-16 cell stage. The NT-F blastocysts contained low levels of heteroplasmy (2.2%) and no somatic-derived mtDNA was detected in the gametes or the tissues of the newborn calf cloned. These results suggest that, in contrast to the mtDNA of blastomeres, that of somatic cells either undergoes replication or escapes degradation during cleavage, although it is degraded later after the blastocyst stage or lost during somatic development, as revealed by the lack of donor cell mtDNA at birth.
Resumo:
Efficient artificial activation is indispensable for the success of cloning programs. Strontium has been shown to effectively activate mouse oocytes for nuclear transfer procedures, however, there is limited information on its use for bovine oocytes. The present study had as objectives: (1) to assess the ability of strontium to induce activation and parthenogenetic development in bovine oocytes of different maturational ages in comparison with ethanol; and (2) to verify whether the combination of both treatments improves activation and parthenogenetic development rates. Bovine oocytes were in vitro matured for 24, 26, 28, and 30 h, and treated with ethanol (E, 7% for 5 min) or strontium chloride (S, 10 mM SrCl2 for 5 h) alone or in combination: ethanol + strontium (ES) and strontium + ethanol (SE). Activated oocytes were cultured in vitro in synthetic oviductal fluid (SOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage (M). Treatment with ethanol and strontium promoted similar results regarding pronuclear formation (E, 20-66.7%; S, 26.7-53.3%; P > 0.05) and cleavage (E, 12.8-40.6%; S, 16.1-41.9%; P > 0.05), regardless of oocyte age. The actions of both strontium and ethanol were influenced by oocyte age: ethanol induced greater activation rates after 28 and 30 h of maturation (48.4 and 66.7% versus 20.0 and 23.3% for 24 and 26 It, respectively; P < 0.05) and strontium after 30 It (53.3%) was superior to 24 and 26h (26.7% for both). Blastocyst development rates were minimal in all treatments (0.0-6.3%; P > 0.05), however, when the mean (+/-S.D.) cell number in blastocysts at the same maturational period was compared, strontium treatment was superior to ethanol for activation rates (82 +/- 5.7 and 89.5 +/- 7.8 versus 54 and 61, at 28 and 30 h, respectively). Improved results were obtained by combined treatments. The combination of ethanol and strontium resulted in similar pronuclear formation (ES, 36.7-83.9%; SE, 53.1-90.3%) and cleavage rates (ES, 31.3-81.3%; SE, 65.6-80.7%). Regarding embryo development, there was no difference (P > 0.05) between treatments, and blastocysts were only obtained in treatment SE at 24 and 26 h (6.5% for both). It is concluded that, SrCl2 induces activation and parthenogenetic development in bovine oocytes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Murine and bovine embryos at the late morula stage were cultured in medium containing high-titer rat H-Y antisera. After 12 h of incubation, embryos blocked at the late morulae stage were classified as males and those at the blastocyst stage were classified as females. Sexing of murine embryos by PCR and cytogenetics revealed that 83% of the embryos classified as males and 82% of those classified as females had their sex correctly predicted (P < 0.05). Bovine embryos were transferred to recipient females. Pregnancy rates were 71.4% (10/14) for embryos classified as males and 68.8% (11/16) for embryos classified as females. The sex was correctly predicted for 80% (8/10) of the embryos classified as males and for 81.8% (9/11) of those classified as females (overall accuracy, 80.9%, P < 0.05). Therefore, the induction of developmental arrest by high-titer male-specific antisera was an efficient strategy for non-invasive embryo sexing. The procedure was straightforward and has considerable commercial potential for sexing bovine embryos. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Avaliaram-se o efeito do IGF-I na maturação in vitro (MIV) (experimento I) e no desenvolvimento embrionário (DE) (experimento II) de oócitos bovinos fecundados in vitro, quanto às taxas de clivagem (TC), de blastocistos (TB) e de eclosão (TE). Para MIV, complexos cumulus-oócitos imaturos foram cultivados em meio TCM-199 suplementado com HEPES, bicarbonato e piruvato de sódio, aditivos, soro fetal bovino (meio B-199) e gonadotrofinas 14U/ml de PMSG e 7U/ml de hCG). Para o desenvolvimento embrionário, os oócitos/zigotos foram cultivados em meio B-199 com células epiteliais do oviduto bovino em suspensão sob óleo de silicone. As condições de cultivo in vitro para ambos os experimentos seguiram os tratamentos: 1- meio B-199 + 200 ng/ml IGF-I; 2- B-199 + 100 ng/ml IGF-I; 3- B-199 + 50 ng/ml IGF-I; 4- B-199 + 10 ng/ml IGF-I; 5- B-199 + 0 ng/ml IGF-I. Todas as culturas foram realizadas a 38,5° C em atmosfera com 5% de CO2 e os dados foram analisados pelo teste do qui-quadrado. No experimento I, não houve diferença (P>0,05) entre os tratamentos quanto às TC, TB e TE, quando o meio de MIV foi suplementado com IGF-I. No experimento II, a adição de IGF-I ao meio de DE resultou em aumento na TC (P<0,05) mas não influenciou a TB e a TE. A adição de 200 ng/ml de IGF-I ao meio DE melhorou a TC (71,1%) quando comparada com a TC dos grupos de 100 ng/ml de IGF-I (57,6%) ou controle (56,7%), entretanto não houve diferença quando comparada com a dos grupos de 50 ng/ml (69,4%) ou 10 ng/ml (73,1%) de IGF-I. Não houve efeito benéfico na adição de 10 a 200 ng/ml de IGF-I nos meios de MIV e de DE com relação ao desenvolvimento de embriões produzidos a partir de oócitos maturados e fecundados in vitro.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abnormal placental development is common in the bovine somatic cell nuclear transfer (SCNT)-derived fetus. In the present study, we characterised the expression of E-cadherin and beta-catenin, structural proteins of adherens junctions, in SCNT gestations as a model for impaired placentation. Cotyledonary tissues were separated from pregnant uteri of SCNT (n - 6) and control pregnancies (n - 8) obtained by artificial insemination. Samples were analysed by western blot, quantitative RT-PCR (qRT-PCR) and immunohistochemistry. Bovine trophectoderm cell lines derived from SCNT and control embryos were analysed to compare with the in utero condition. Although no differences in E-cadherin or beta-catenin mRNA abundance were observed in fetal tissues between the two groups, proteins encoded by these genes were markedly under-expressed in SCNT trophoblast cells. Immunohistochemistry revealed a different pattern of E-cadherin and total beta-catenin localisation in SCNT placentas compared with controls. No difference was observed in subcellular localisation of dephosphorylated active-beta-catenin protein in SCNT tissues compared with controls. However, qRT-PCR confirmed that the wingless (WNT)/beta-catenin signalling pathway target genes CCND1, CLDN1 and MSX1 were downregulated in SCNT placentas. No differences were detected between two groups of bovine trophectoderm cell lines. Our results suggest that impaired expression of E-cadherin and beta-catenin proteins, along with defective beta-catenin signalling during embryo attachment, specifically during placentation, is a molecular mechanism explaining insufficient placentation in the bovine SCNT-derived fetus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)