907 resultados para boundary element method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses basically a wave propagation based method for identifying the damage due to skin-stiffener debonding in a stiffened structure. First, a spectral finite element model (SFEM) is developed for modeling wave propagation in general built-up structures, using the concept of assembling 2D spectral plate elements and the model is then used in modeling wave propagation in a skin-stiffener type structure. The damage force indicator (DFI) technique, which is derived from the dynamic stiffness matrix of the healthy stiffened structure (obtained from the SFEM model) along with the nodal displacements of the debonded stiffened structure (obtained from 2D finite element model), is used to identify the damage due to the presence of debond in a stiffened structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture analysis of three point bending specimens. It is observed from the studies that the computed values from FEA are in very good agreement with the corresponding experimental values. The computed values of stress vs crack width will be useful for evaluation of fracture energy, crack tip opening displacement and fracture toughness. Further, these values can also be used for crack growth study, remaining life assessment and residual strength evaluation of concrete structural components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a finite element formulation for the Saint-Venant torsion and bending problems for prismatic beams. The torsion problem formulation is based on the warping function, and can handle multiply-connected regions (including thin-walled structures), compound and anisotropic bars. Similarly, the bending formulation, which is based on linearized elasticity theory, can handle multiply-connected domains including thin-walled sections. The torsional rigidity and shear centers can be found as special cases of these formulations. Numerical results are presented to show the good coarse-mesh accuracy of both the formulations for both the displacement and stress fields. The stiffness matrices and load vectors (which are similar to those for a variable body force in a conventional structural mechanics problem) in both formulations involve only domain integrals, which makes them simple to implement and computationally efficient. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groundwater management involves conflicting objectives as maximization of discharge contradicts the criteria of minimum pumping cost and minimum piping cost. In addition, available data contains uncertainties such as market fluctuations, variations in water levels of wells and variations of ground water policies. A fuzzy model is to be evolved to tackle the uncertainties, and a multiobjective optimization is to be conducted to simultaneously satisfy the contradicting objectives. Towards this end, a multiobjective fuzzy optimization model is evolved. To get at the upper and lower bounds of the individual objectives, particle Swarm optimization (PSO) is adopted. The analytic element method (AEM) is employed to obtain the operating potentio metric head. In this study, a multiobjective fuzzy optimization model considering three conflicting objectives is developed using PSO and AEM methods for obtaining a sustainable groundwater management policy. The developed model is applied to a case study, and it is demonstrated that the compromise solution satisfies all the objectives with adequate levels of satisfaction. Sensitivity analysis is carried out by varying the parameters, and it is shown that the effect of any such variation is quite significant. Copyright (c) 2015 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用面一面接触的三维离散元刚性块体模型,从实测节理面中取出其中的三组,按照其倾向、倾角和节理间距将三峡永久船闸未开挖的区域划分为10~5个离散单元,通过施加力边界条件,给出了与实测初始地应力场接近的数值模拟结果;然后,分4步模拟了永久船闸的开挖过程。计算结果表明:开挖过程会引起节理面出现张开趋势,个别岩体还会沿着节理面滑移。岩体位移的不对称现象较为自然地说明了由节理引起的岩体各向异性特征。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional model has been developed based on the experimental results of stainless steel remelting with the laminar plasma technology to investigate the transient thermo-physical characteristics of the melt pool liquids. The influence of the temperature field, temperature gradient, solidification rate and cooling rate on the processing conditions has been investigated numerically. Not only have the appropriate processing conditions been determined according to the calculations, but also they have been predicted with a criterion established based on the concept of equivalent temperature area density (ETAD) that is actually a function of the processing parameters and material properties. The comparison between the resulting conditions shows that the ETAD method can better predict the optimum condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure displacement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method, plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper first presents a stochastic structural model to describe the random geometrical features of rock and soil aggregates. The stochastic structural model uses mixture ratio, rock size and rock shape to construct the microstructures of aggregates,and introduces two types of structural elements (block element and jointed element) and three types of material elements (rock element, soil element, and weaker jointed element)for this microstructure. Then, continuum-based discrete element method is used to study the deformation and failure mechanism of rock and soil aggregate through a series of loading tests. It is found that the stress-strain curve of rock and soil aggregates is nonlinear, and the failure is usually initialized from weaker jointed elements. Finally, some factors such as mixture ratio, rock size and rock shape are studied in detail. The numerical results are in good agreement with in situ test. Therefore, current model is effective for simulating the mechanical behaviors of rock and soil aggregates.