907 resultados para bone strength


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. METHODS: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). RESULTS: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. CONCLUSIONS: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. Methods: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). Results: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. Conclusions: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required. Clinical Relevance: Understanding the mechanical properties of milled human allograft is important when impaction grafting is used for mechanical support. A simple means of improving the mechanical strength of graft produced by currently available bone mills, including an intraoperative washing technique, is described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 mu m) marine-derived calcium phosphate bioceramic granule. It was prepared fro Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furance at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this experiment was to determine the normal values of Bone Radiographic Density (BRD) by using the optical densitometry in radiographic images and the Bone Breaking Strength (BBS) of broiler femurs at different ages (8, 22 and 42 d of age). A total of 60 Cobb male broilers were distributed in three age groups of 20 birds. The BRD and the BBS (maxim force and rigidity) values increased (p<0.01) over the course of ages, presenting greater values at 42 d of age when comparing to 8 and 22 d of age, evidencing a biomechanical adaptation of femur to growth. This experiment offers results that can be used in other experiments of broilers fed with different nutritional levels and they can also be related to pathological values, allowing the diagnosis of diseases that affect the integrity of the poultry leg. © Asian Network for Scientific Information, 2011.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction. Physical activity can provide long-term benefits for systemic lupus erythematosus (SLE). Objective. This study sought to demonstrate the effects of progressive resistance training on the muscular strength, bone mineral density (BMD) and body composition of pre-menopausal women with SLE undergoing glucocorticoid (GC) treatment. Materials and Methods. This is the case report of a 43-year-old African-South American premenopausal woman with non-extensive SLE and low bone density. A six-month program with three bimonthly cycles of 70%, 80%, and 90% intensity according to the 10 maximum-repetition test was used. Dual-energy X-ray absorptiometry (DXA) was used to measure the BMD, T-scores and body composition, and indirect fluorescence was used to measure the levels of antinuclear antibodies. Student's t-test was used. Results. Statistical improvement was noted in all strength exercises, including the 45° leg press (Δ%=+50%, p<0.001) and knee extension (Δ%=+15%, p=0.003) to maintain the BMD of the L2-L4 lumbar (Δ%=+0.031%; p=0.46) as well as the trochanter (Δ%=+0.037%; p=0.31) and BMI (Δ%=-0.8, p=0.54). Conclusion. In this case study, the presented methodology had a positive effect on strength and contributed to the maintenance of BMD and body composition in a woman with SLE undergoing GC treatment. © 2012 Revista Andaluza de Medicina del Deporte.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Osteoporosis is well recognized as a cirrhosis complication; however, most studies assessing this condition included only patients on liver transplantation lists with an elevated rate of bone diseases. While general population studies show that handgrip strength is clearly associated with bone mineral density, until now this tool has not been applied to cirrhotic patients in relation to their bone condition. This study aimed to evaluate whether handgrip strength, bone and liver tests may be useful as predictors of bone disease in cirrhotic outpatients. 129 subjects were included (77 men and 52 women). Dual energy X-ray absorptiometry was applied to evaluate lumbar-spine and femoral-neck T scores. Osteoporosis/osteopenia rates were 26.3%/35.6% in the lumbar spine and 6.9%/41.8% in the femoral neck, respectively. Model selections were based on backward procedures to find the best predictors of low T scores. For lumbar spine, only low handgrip strength and high parathyroid hormone levels were clearly related to low T scores. For femoral neck, only age was associated with low T scores. Handgrip strength may serve as an effective predictor of low lumbar spine T score among cirrhotic outpatients. As cirrhosis affects the lumbar spine more than the femoral neck, these results suggest that handgrip strength should be tested in all cirrhotic patients as a first indicator of bone health. This article is protected by copyright. All rights reserved.