902 resultados para biomedical
Resumo:
BACKGROUND: A possible strategy for increasing smoking cessation rates could be to provide smokers who have contact with healthcare systems with feedback on the biomedical or potential future effects of smoking, e.g. measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer. We reviewed systematically data on smoking cessation rates from controlled trials that used biomedical risk assessment and feedback. OBJECTIVES: To determine the efficacy of biomedical risk assessment provided in addition to various levels of counselling, as a contributing aid to smoking cessation. SEARCH STRATEGY: We systematically searched he Cochrane Collaboration Tobacco Addiction Group Specialized Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (1966 to 2004), and EMBASE (1980 to 2004). We combined methodological terms with terms related to smoking cessation counselling and biomedical measurements. SELECTION CRITERIA: Inclusion criteria were: a randomized controlled trial design; subjects participating in smoking cessation interventions; interventions based on a biomedical test to increase motivation to quit; control groups receiving all other components of intervention; an outcome of smoking cessation rate at least six months after the start of the intervention. DATA COLLECTION AND ANALYSIS: Two assessors independently conducted data extraction on each paper, with disagreements resolved by consensus. MAIN RESULTS: From 4049 retrieved references, we selected 170 for full text assessment. We retained eight trials for data extraction and analysis. One of the eight used CO alone and CO + Genetic Susceptibility as two different intervention groups, giving rise to three possible comparisons. Three of the trials isolated the effect of exhaled CO on smoking cessation rates resulting in the following odds ratios (ORs) and 95% confidence intervals (95% CI): 0.73 (0.38 to 1.39), 0.93 (0.62 to 1.41), and 1.18 (0.84 to 1.64). Combining CO measurement with genetic susceptibility gave an OR of 0.58 (0.29 to 1.19). Exhaled CO measurement and spirometry were used together in three trials, resulting in the following ORs (95% CI): 0.6 (0.25 to 1.46), 2.45 (0.73 to 8.25), and 3.50 (0.88 to 13.92). Spirometry results alone were used in one other trial with an OR of 1.21 (0.60 to 2.42).Two trials used other motivational feedback measures, with an OR of 0.80 (0.39 to 1.65) for genetic susceptibility to lung cancer alone, and 3.15 (1.06 to 9.31) for ultrasonography of carotid and femoral arteries performed in light smokers (average 10 to 12 cigarettes a day). AUTHORS' CONCLUSIONS: Due to the scarcity of evidence of sufficient quality, we can make no definitive statements about the effectiveness of biomedical risk assessment as an aid for smoking cessation. Current evidence of lower quality does not however support the hypothesis that biomedical risk assessment increases smoking cessation in comparison with standard treatment. Only two studies were similar enough in term of recruitment, setting, and intervention to allow pooling of data and meta-analysis.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Le domaine biomédical est probablement le domaine où il y a les ressources les plus riches. Dans ces ressources, on regroupe les différentes expressions exprimant un concept, et définit des relations entre les concepts. Ces ressources sont construites pour faciliter l’accès aux informations dans le domaine. On pense généralement que ces ressources sont utiles pour la recherche d’information biomédicale. Or, les résultats obtenus jusqu’à présent sont mitigés : dans certaines études, l’utilisation des concepts a pu augmenter la performance de recherche, mais dans d’autres études, on a plutôt observé des baisses de performance. Cependant, ces résultats restent difficilement comparables étant donné qu’ils ont été obtenus sur des collections différentes. Il reste encore une question ouverte si et comment ces ressources peuvent aider à améliorer la recherche d’information biomédicale. Dans ce mémoire, nous comparons les différentes approches basées sur des concepts dans un même cadre, notamment l’approche utilisant les identificateurs de concept comme unité de représentation, et l’approche utilisant des expressions synonymes pour étendre la requête initiale. En comparaison avec l’approche traditionnelle de "sac de mots", nos résultats d’expérimentation montrent que la première approche dégrade toujours la performance, mais la seconde approche peut améliorer la performance. En particulier, en appariant les expressions de concepts comme des syntagmes stricts ou flexibles, certaines méthodes peuvent apporter des améliorations significatives non seulement par rapport à la méthode de "sac de mots" de base, mais aussi par rapport à la méthode de Champ Aléatoire Markov (Markov Random Field) qui est une méthode de l’état de l’art dans le domaine. Ces résultats montrent que quand les concepts sont utilisés de façon appropriée, ils peuvent grandement contribuer à améliorer la performance de recherche d’information biomédicale. Nous avons participé au laboratoire d’évaluation ShARe/CLEF 2014 eHealth. Notre résultat était le meilleur parmi tous les systèmes participants.
Resumo:
Department of Physics, Cochin University of Science & Technology
Resumo:
Amphiphilic polymers are a class of polymers that self-assemble into different types of microstructure, depending on the solvent environment and external stimuli. Self assembly structures can exist in many different forms, such as spherical micelles, rod-like micelles, bi-layers, vesicles, bi-continuous structure etc. Most biological systems are basically comprised of many of these organised structures arranged in an intelligent manner, which impart functions and life to the system. We have adopted the atom transfer radical polymerization (ATRP) technique to synthesize various types of block copolymer systems that self-assemble into different microstructure when subject to an external stimuli, such as pH or temperature. The systems that we have studied are: (1) pH responsive fullerene (C60) containing poly(methacrylic acid) (PMAA-b-C60); (2) pH and temperature responsive fullerene containing poly[2-(dimethylamino)ethyl methacrylate] (C₆₀-b-PDMAEMA); (3) other responsive water-soluble fullerene systems. By varying temperature, pH and salt concentration, different types microstructure can be produced. In the presence of inorganic salts, fractal patterns at nano- to microscopic dimension were observed for negatively charged PMAA-b-C60, while such structure was not observed for positively charged PDMAEMA-b-C60. We demonstrated that negatively charged fullerene containing polymeric systems can serve as excellent nano-templates for the controlled growth of inorganic crystals at the nano- to micrometer length scale and the possible mechanism was proposed. The physical properties and the characteristics of their self-assembly properties will be discussed, and their implications to chemical and biomedical applications will be highlighted.
Resumo:
Modern methods of compositional data analysis are not well known in biomedical research. Moreover, there appear to be few mathematical and statistical researchers working on compositional biomedical problems. Like the earth and environmental sciences, biomedicine has many problems in which the relevant scienti c information is encoded in the relative abundance of key species or categories. I introduce three problems in cancer research in which analysis of compositions plays an important role. The problems involve 1) the classi cation of serum proteomic pro les for early detection of lung cancer, 2) inference of the relative amounts of di erent tissue types in a diagnostic tumor biopsy, and 3) the subcellular localization of the BRCA1 protein, and it's role in breast cancer patient prognosis. For each of these problems I outline a partial solution. However, none of these problems is \solved". I attempt to identify areas in which additional statistical development is needed with the hope of encouraging more compositional data analysts to become involved in biomedical research
Resumo:
Audio recording of a tour of the Biomedical Sciences Library at the Boldrewood Campus for the academic session 2007-2008. Voices of 2 students from the School of Biological Sciences.
Resumo:
This is a collection of PowerPoint and Word documents used to deliver a 10 ECTS module at HE4 level to PhD students in the School of Medicine.
Resumo:
--
Resumo:
Increasing rates of obesity and heart disease are compromising quality of life for a growing number of people. There is much research linking adult disease with the growth and development both in utero and during the first year of life. The pig is an ideal model for studying the origins of developmental programming. The objective of this paper was to construct percentile growth curves for the pig for use in biomedical studies. The body weight (BIN) of pigs was recorded from birth to 150 days of age and their crown-to-rump length was measured over the neonatal period to enable the ponderal index (Pl; kg/m(3)) to be calculated. Data were normalised and percentile curves were constructed using Cole's lambda-mu-sigma (LMS) method for BW and PI. The construction of these percentile charts for use in biomedical research will allow a more detailed and precise tracking of growth and development of individual pigs under experimental conditions.
Resumo:
Power delivery for biomedical implants is a major consideration in their design for both measurement and stimulation. When performed by a wireless technique, transmission efficiency is critically important not only because of the costs associated with any losses but also because of the nature of those losses, for example, excessive heat can be uncomfortable for the individual involved. In this study, a method and means of wireless power transmission suitable for biomedical implants are both discussed and experimentally evaluated. The procedure initiated is comparable in size and simplicity to those methods already employed; however, some of Tesla’s fundamental ideas have been incorporated in order to obtain a significant improvement in efficiency. This study contains a theoretical basis for the approach taken; however, the emphasis here is on practical experimental analysis
Resumo:
Power delivery for biomedical implants is a major consideration in their design for both measurement and stimulation. When performed by a wireless technique, transmission efficiency is critically important not only because of the costs associated with any losses but also because of the nature of those losses, for example, excessive heat can be uncomfortable for the individual involved. In this study, a method and means of wireless power transmission suitable for biomedical implants are both discussed and experimentally evaluated. The procedure initiated is comparable in size and simplicity to those methods already employed; however, some of Tesla’s fundamental ideas have been incorporated in order to obtain a significant improvement in efficiency. This study contains a theoretical basis for the approach taken; however, the emphasis here is on practical experimental analysis.