998 resultados para biomechanical testing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Top screw pullout occurs when the screw is under too much axial force to remain secure in the vertebral body. In vitro biomechanical pullout tests are commonly done to find the maximum fixation strength of anterior vertebral body screws. Typically, pullout tests are done instantaneously where the screw is inserted and then pulled out immediately after insertion. However, bone is a viscoelastic material so it shows a time dependent stress and strain response. Because of this property, it was hypothesised that creep occurs in the vertebral trabecular bone due to the stress caused by the screw. The objective of this study was therefore to determine whether the axial pullout strength of anterior vertebral body screws used for scoliosis correction surgery changes with time after insertion. This study found that there is a possible relationship between pullout strength and time; however more testing is required as the sample numbers were quite small. The design of the screw is made with the knowledge of the strength it must obtain. This is important to prevent such occurrences as top screw pullout. If the pullout strength is indeed decreased due to creep, the design of the screw may need to be changed to withstand greater forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Edith Penrose’s theory of firm growth postulates that a firm’s current growth rate will be influenced by the adjustment costs of, and changes to a firm’s productive opportunity set arising from, previous growth. Although she explicitly considered the impact of previous organic growth on current organic growth, she was largely silent about the impact of previous acquisitive growth. In this paper we extend Penrose’s work to examine that the relative impact of organic and acquisitive growth on the adjustment costs and productive opportunity set of the firm. Employing a panel of commercially active enterprises in Sweden over a 10 year period our results suggest the following. First, previous organic growth acts as a constraint on current organic growth. Second, previous acquisitive growth has a positive effect on current organic growth. We conclude that organic growth and acquisitive growth constitute two distinct strategic options facing the firm, which have a differential impact on the future organic growth of the firm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer aided joint replacement surgery has become very popular during recent years and is being done in increasing numbers all over the world. The accuracy of the system depends to a major extent, on accurate registration and immobility of the tracker attachment devices to the bone. This study was designed to asses the forces needed to displace the tracker attachment devices in the bone simulators. Bone simulators were used to maintain the uniformity of the bone structure during the study. The fixation devices tested were 3mm diameter self drilling, self tapping threaded pin, 4mm diameter self tapping cortical threaded pin, 5mm diameter self tapping cancellous threaded pin and a triplanar fixation device ‘ortholock’ used with three 3mm pins. All the devices were tested for pull out, translational and rotational forces in unicortical and bicortical fixation modes. Also tested was the normal bang strength and forces generated by leaning on the devices. The forces required to produce translation increased with the increasing diameter of the pins. These were 105N, 185N, and 225N for the unicortical fixations and 130N, 200N, 225N for the bicortical fixations for 3mm, 4mm and 5mm diameter pins respectively. The forces required to pull out the pins were 1475N, 1650N, 2050N for the unicortical, 1020N, 3044N and 3042N for the bicortical fixated 3mm, 4mm and 5mm diameter pins. The ortholock translational and pull out strength was tested to 900N and 920N respectively and still it did not fail. Rotatory forces required to displace the tracker on pins was to the magnitude of 30N before failure. The ortholock device had rotational forces applied up to 135N and still did not fail. The manual leaning forces and the sudden bang forces generated were of the magnitude of 210N and 150N respectively. The strength of the fixation pins increases with increasing diameter from three to five mm for the translational forces. There is no significant difference in pull out forces of four mm and five mm diameter pins though it is more that the three mm diameter pins. This is because of the failure of material at that stage rather than the fixation device. The rotatory forces required to displace the tracker are very small and much less that that can be produced by the surgeon or assistants in single pins. Although the ortholock device was tested to 135N in rotation without failing, one has to be very careful not to put any forces during the operation on the tracker devices to ensure the accuracy of the procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do commencing students possess the level of information literacy (IL) knowledge and skills they need to succeed at university? What impact does embedding IL within the engineering and design curriculum have? This paper reports on the self-perception versus the reality of IL knowledge and skills, across a large cohort of first year built environment and engineering students. Acting on the findings of this evaluation, the authors (a team of academic librarians) developed an intensive IL skills program which was integrated into a faculty wide unit. Perceptions, knowledge and skills were re-evaluated at the end of the semester to determine if embedded IL education made a difference. Findings reveal that both the perception and reality of IL skills were significantly and measurably improved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: In an effort to examine the decreasing oral health trend of Australian dental patients, the Health Belief Model (HBM) was utilised to understand the beliefs underlying brushing and flossing self-care. The HBM states that perception of severity and susceptibility to inaction and an estimate of the barriers and benefits of behavioural performance influences people’s health behaviours. Self-efficacy, confidence in one’s ability to perform oral self-care, was also examined. Methods: In dental waiting rooms, a community sample (N = 92) of dental patients completed a questionnaire assessing HBM variables and self-efficacy, as well as their performance of the oral hygiene behaviours of brushing and flossing. Results: Partial support only was found for the HBM with barriers emerging as the sole HBM factor influencing brushing and flossing behaviours. Self-efficacy significantly predicted both oral hygiene behaviours also. Conclusion: Support was found for the control factors, specifically a consideration of barriers and self-efficacy, in the context of understanding dental patients’ oral hygiene decisions. Practice implications: Dental professionals should encourage patients’ self-confidence to brush and floss at recommended levels and discuss strategies that combat barriers to performance, rather than emphasising the risks of inaction or the benefits of oral self-care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of intellectual ability is a core competency in psychology. The results of intelligence tests have many potential implications and are used frequently as the basis for decisions about educational placements, eligibility for various services, and admission to specific groups. Given the importance of intelligence test scores, accurate test administration and scoring are essential; yet there is evidence of unacceptably high rates of examiner error. This paper discusses competency and postgraduate training in intelligence testing and presents a training model for postgraduate psychology students. The model aims to achieve high levels of competency in intelligence testing through a structured method of training, practice and feedback that incorporates peer support, self-reflection and multiple methods for evaluating competency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication is one team process factor that has received considerable research attention in the team literature. This literature provides equivocal evidence regarding the role of communication in team performance and yet, does not provide any evidence for when communication becomes important for team performance. This research program sought to address this evidence gap by a) testing task complexity and team member diversity (race diversity, gender diversity and work value diversity) as moderators of the team communication — performance relationship; and b) testing a team communication — performance model using established teams across two different task types. The functional perspective was used as the theoretical framework for operationalizing team communication activity. The research program utilised a quasi-experimental research design with participants from a large multi-national information technology company whose Head Office was based in Sydney, Australia. Participants voluntarily completed two team building exercises (a decision making and production task), and completed two online questionnaires. In total, data were collected from 1039 individuals who constituted 203 work teams. Analysis of the data revealed a small number of significant moderation effects, not all in the expected direction. However, an interesting and unexpected finding also emerged from Study One. Large and significant correlations between communication activity ratings were found across tasks, but not within tasks. This finding suggested that teams were displaying very similar profiles of communication on each task, despite the tasks having different communication requirements. Given this finding, Study Two sought to a) determine the relative importance of task versus team effects in explaining variance in team communication measures for established teams; b) determine if established teams had reliable and discernable team communication profiles and if so, c) investigate whether team communication profiles related to task performance. Multi-level modeling and repeated measures analysis of variance (ANOVA) revealed that task type did not have an effect on team communication ratings. However, teams accounted for 24% of the total variance in communication measures. Through cluster analysis, five reliable and distinct team communication profiles were identified. Consistent with the findings of the multi-level analysis and repeated measures ANOVA, teams’ profiles were virtually identical across the decision making and production tasks. A relationship between communication profile and performance was identified for the production task, although not for the decision making task. This research responds to calls in the literature for a better understanding of when communication becomes important for team performance. The moderators tested in this research were not found to have a substantive or reliable effect on the relationship between communication and performance. However, the consistency in team communication activity suggests that established teams can be characterized by their communication profiles and further, that these communication profiles may have implications for team performance. The findings of this research provide theoretical support for the functional perspective in terms of the communication – performance relationship and further support the team development literature as an explanation for the stability in team communication profiles. This research can also assist organizations to better understand the specific types of communication activity and profiles of communication that could offer teams a performance advantage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusionless scoliosis surgery is an emerging treatment for idiopathic scoliosis as it offers theoretical advantages over current forms of treatment. Currently the treatment options for idiopathic scoliosis are observation, bracing and fusion. While brace treatment is non-invasive, and preserves the growth, motion, and function of the spine, it does not correct deformity and is only modestly successful in preventing curve progression. In adolescents who fail brace treatment, surgical treatment with an instrumented spinal fusion usually results in better deformity correction but is associated with substantially greater risk. Furthermore in younger patients requiring surgical treatment, fusion procedures are known to adversely effect the future growth of the chest and spine. Fusionless treatments have been developed to allow effective surgical treatment of patients with idiopathic scoliosis who are too young for fusion procedures. Anterior vertebral stapling is one such fusionless treatment which aims to modulate the growth of vertebra to allow correction of scoliosis whilst maintaining normal spinal motion The Mater Misericordiae Hospital in Brisbane has begun to use anterior vertebral stapling to treat patients with idiopathic scoliosis who are too young for fusion procedures. Currently the only staple approved for clinical use is manufactured by Medtronic Sofamor Danek (Memphis, TN). This thesis explains the biomechanical and anatomical changes that occur following anterior vertebral staple insertion using in vitro experiments performed on an immature bovine model. Currently there is a paucity of published information about anterior vertebral stapling so it is hoped that this project will provide information that will aid in our understanding of the clinical effects of staple insertion. The aims of this experimental study were threefold. The first phase was designed to determine the changes in the bending stiffness of the spine following staple insertion. The second phase was designed to measure the forces experienced by the staple during spinal movements. The third and final phase of testing was designed to describe the structural changes that occur to a vertebra as a consequence of staple insertion. The first phase of testing utilised a displacement controlled testing robot to compare the change in stiffness of a single spinal motion segment following staple insertion for the three basic spinal motions of flexion-extension, lateral bending, and axial rotation. For the second phase of testing strain gauges were attached to staples and used to measure staple forces during spinal movement. In the third and final phase the staples were removed and a testing specimen underwent micro-computed tomography (CT) scanning to describe the anatomical changes that occur following staple insertion. The displacement controlled testing showed that there was a significant decrease in bending stiffness in flexion, extension, lateral bending away from the staple, and axial rotation away from the staple following staple insertion. The strain gauge measurements showed that the greatest staple forces occurred in flexion and the least in extension. In addition, a reduction in the baseline staple compressive force was seen with successive loading cycles. Micro-CT scanning demonstrated that significant damage to the vertebral body and endplate occurred as a consequence of staple insertion. The clinical implications of this study are significant. Based on the findings of this project it is likely that the clinical effect of the anterior vertebral staple evaluated in this project is a consequence of growth plate damage (also called hemiepiphysiodesis) causing a partial growth arrest of the vertebra rather than simply compression of the growth plate. The surgical creation of a unilateral growth arrest is a well established treatment used in the management of congenital scoliosis but has not previously been considered for use in idiopathic scoliosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New media, as a free and universal communication tool, has had an impact on the power of the general public to comment on a variety of issues. As the public can comment favourably or unfavourably on advertisements, such as on Youtube, the advertising industry must start using weblogs to research reaction to their advertising campaigns. This exploratory study examines the responses of some advertising industry practitioners, both advertisers and agencies, on the impact of new media, specifically weblogs, and the use of new media as a source of research on advertising campaigns.