929 resultados para bioactive peptides
Resumo:
Murine suppressor T-cell hybridoma cells (231F1) secrete not only bioactive glycosylation-inhibiting factor (GIF) but also an inactive peptide comparable to bioactive GIF peptide in its molecular size and reactivity with anti-GIF; the amino acid sequence of the inactive peptide is identical to that of the bioactive homologue. The inactive GIF peptide in culture supernatant of both the 231F1 cells and a stable transfectant of human GIF cDNA in the murine suppressor T hybridoma selectively bound to Affi-Gel 10, whereas bioactive GIF peptides from the same sources failed to bind to the gel. The inactive cytosolic human GIF from the stable transfectant and Escherichia coli-derived recombinant human GIF also had affinity for Affi-Gel 10. Both the bioactive murine GIF peptide from the suppressor T hybridoma and bioactive recombinant human GIF from the stable transfectant bound to the anti-I-J monoclonal antibody H6 coupled to Affi-Gel. However, bioactive hGIF produced by a stable transfectant of human GIF cDNA in BMT10 cells failed to be retained in H6-coupled Affi-Gel. These results indicate that the I-J specificity is determined by the cell source of the GIF peptide and that the I-J determinant recognized by monoclonal antibody H6 does not represent a part of the primary amino acid sequence of GIF. It appears that the epitope is generated by a posttranslational modification of the peptide.
Resumo:
Small molecules designed to mimic specific structural components of a protein (peptide strands, sheets, turns, helices, or amino acids) can be expected to display agonist or antagonist biological responses by virtue of interacting with the same receptors that recognize the protein. Here we describe some minimalist approaches to structural mimetics of amino acids and of strand, turn, or helix segments of proteins. The designed molecules show potent and selective inhibition of protease, transferase, and phospholipase enzymes, or antagonism of G-protein coupled or transcriptional receptors, and have potent anti-tumour, anti-inflammatory, or antiviral activity.
Resumo:
Ghrelin is a gut-brain peptide hormone that induces appetite, stimulates the release of growth hormone, and has recently been shown to ameliorate inflammation. Recent studies have suggested that ghrelin may play a potential role in inflammation-related diseases such as inflammatory bowel diseases (IBD). A previous study with ghrelin in the TNBS mouse model of colitis demonstrated that ghrelin treatment decreased the clinical severity of colitis and inflammation and prevented the recurrence of disease. Ghrelin may be acting at the immunological and epithelial level as the ghrelin receptor (GHSR) is expressed by immune cells and intestinal epithelial cells. The current project investigated the effect of ghrelin in a different mouse model of colitis using dextran sodium sulphate (DSS) – a luminal toxin. Two molecular weight forms of DSS were used as they give differing effects (5kDa and 40kDa). Ghrelin treatment significantly improved clinical colitis scores (p=0.012) in the C57BL/6 mouse strain with colitis induced by 2% DSS (5kDa). Treatment with ghrelin suppressed colitis in the proximal colon as indicated by reduced accumulative histopathology scores (p=0.03). Whilst there was a trend toward reduced scores in the mid and distal colon in these mice this did not reach significance. Ghrelin did not affect histopathology scores in the 40kDa model. There was no significant effect on the number of regulatory T cells or TNF-α secretion from cultured lymph node cells from these mice. The discovery of C-terminal ghrelin peptides, for example, obestatin and the peptide derived from exon 4 deleted proghrelin (Δ4 preproghrelin peptide) have raised questions regarding their potential role in biological functions. The current project investigated the effect of Δ4 peptide in the DSS model of colitis however no significant suppression of colitis was observed. In vitro epithelial wound healing assays were also undertaken to determine the effect of ghrelin on intestinal epithelial cell migration. Ghrelin did not significantly improve wound healing in these assays. In conclusion, ghrelin treatment displays a mild anti-inflammatory effect in the 5kDa DSS model. The potential mechanisms behind this effect and the disparity between these results and those published previously will be discussed.
Resumo:
Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca2+ ions. The cellular bioactivity of MBG microspheres was evaluated by investigating the proliferation and attachment of bone marrow stromal cell (BMSC). The loading efficiency and release kinetics of bovine serum albumin (BSA) on MBG microspheres were investigated after coprecipitating with biomimetic apatite in simulated body fluids (SBF). The results showed that MBG microspheres supported BMSC attachment and the Si containing ionic products from MBG microspheres stimulated BMSCs proliferation. The density of apatite on MBG microspheres increased with the length of soaking time in SBF. BSA-loading efficiency of MBG was significantly enhanced by co-precipitating with apatite. Furthermore, the loading efficiency and release kinetics of BSA could be controlled by controlling the density of apatite formed on MBG microspheres. Our results suggest that MBG microspheres are a promising protein-delivery system as a filling material for bone defect healing and regeneration.
Resumo:
Alginate microspheres are considered a promising material as a drug carrier in bone repair due to excellent biocompatibility, but their main disadvantage is low drug entrapment efficiency and non-controllable release. The aim of this study was to investigate the effect of incorporating mesoporous bioglass (MBG), non-mesoporous bioglass (BG) or hydroxyapatite (HAp) into alginate microspheres on their drug-loading and release properties. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic emission spectroscopy (AES) were used to analyse the composition, structure and dissolution of bioactive inorganic materials and their microspheres. Dexamethasone (DEX)-loading and release ability of four microspheres were tested in phosphate buffered saline with varying pHs. Results showed that the drug-loading capacity was enhanced with the incorporation of bioactive inorganic materials into alginate microspheres. The MBG/Alginate microspheres had the highest drug loading ability. DEX release from alginate microspheres correlated to the dissolution of MBG, BG and HAp in PBS, and that the pH was an efficient factor in controlling the DEX release; a high pH resulted in greater DEX release, whereas a low pH delayed DEX release. In addition, MBG/alginate, BG/alginate and HAp/alginate microspheres had varying apatite-formation and dissolution abilities, which indicate that the composites would behave differently with respect to bioactivity. The study suggests that microspheres made of a composite of bioactive inorganic materials and alginate have a bioactivity and degradation profile which greatly improves their drug delivery capacity, thus enhancing their potential applications as bioactive filler materials for bone tissue regeneration.
Resumo:
Context: The magnitude of exercise-induced weight loss depends on the extent of compensatory responses. An increase in energy intake is likely to result from changes in the appetite control system toward an orexigenic environment; however, few studies have measured how exercise impacts on both orexigenic and anorexigenic peptides. ---------- Objective: The aim of the study was to investigate the effects of medium-term exercise on fasting/postprandial levels of appetite-related hormones and subjective appetite sensations in overweight/obese individuals. ---------- Design and Setting: We conducted a longitudinal study in a university research center. ---------- Participants and Intervention: Twenty-two sedentary overweight/obese individuals (age, 36.9 ± 8.3 yr; body mass index, 31.3 ± 3.3 kg/m2) took part in a 12-wk supervised exercise programme (five times per week, 75% maximal heart rate) and were requested not to change their food intake during the study. ---------- Main Outcome Measures: We measured changes in body weight and fasting/postprandial plasma levels of glucose, insulin, total ghrelin, acylated ghrelin (AG), peptide YY, and glucagon-like peptide-1 and feelings of appetite. ---------- Results: Exercise resulted in a significant reduction in body weight and fasting insulin and an increase in AG plasma levels and fasting hunger sensations. A significant reduction in postprandial insulin plasma levels and a tendency toward an increase in the delayed release of glucagon-like peptide-1 (90–180 min) were also observed after exercise, as well as a significant increase (127%) in the suppression of AG postprandially. ---------- Conclusions: Exercise-induced weight loss is associated with physiological and biopsychological changes toward an increased drive to eat in the fasting state. However, this seems to be balanced by an improved satiety response to a meal and improved sensitivity of the appetite control system.
Resumo:
Our strategy entails investigating the influence of varied concentrations (0, 10, 100 and 1000 ng/ml) of human recombinant bone morphogenetic protein-2 (rhBMP-2) on the osteogenic expression of canine osteoblasts, seeded onto poly-caprolactone 20% tricalcium phosphate (PCL-TCP) scaffolds in vitro. Biochemical assay revealed that groups with rhBMP-2 displayed an initial burst in cell growth that was not dose-dependent. However, after 13 days, cell growth declined to a value similar to control. Significantly less cell growth was observed for construct with 1000 ng/ml of rhBMP-2 from 20 days onwards. Confocal microscopy confirmed viability of osteoblasts and at day 20, groups seeded with rhBMP-2 displayed heightened cell death as compared to control. Phase contrast and scanning electron microscopy revealed that osteoblasts heavily colonized surfaces, rods and pores of the PCL-TCP scaffolds. This was consistent for all groups. Finally, Von Kossa and osteocalcin assays demonstrated that cells from all groups maintained their osteogenic phenotype throughout the experiment. Calcification was observed as early as four days after stimulation for groups seeded with rhBMP-2. In conclusion, rhBMP-2 seems to enhance the differentiated function of canine osteoblasts in a non-dose dependent manner. This resulted in accelerated mineralization, followed by death of osteoblasts as they underwent terminal differentiation. Notably, PCL-TCP scaffolds seeded only with canine osteoblasts could sustain excellent osteogenic expression in vitro. Hence, the synergy of PCL with bioactive TCP and rhBMP-2 in a novel composite scaffold, could offer an exciting approach for bone regeneration.
Resumo:
For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO2 glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO2 in an effort to develop a bioactive mesoporous SrO–SiO2 (Sr–Si) glass with the capacity to deliver Sr2+ ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr2+ on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr–Si glass were investigated. The prepared mesoporous Sr–Si glass was found to have an excellent release profile of bioactive Sr2+ ions and dexamethasone, and the incorporation of Sr2+ improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr–Si glass had no cytotoxic effects and its release of Sr2+ and SiO44− ions enhanced alkaline phosphatase activity – a marker of osteogenic cell differentiation – in human bone mesenchymal stem cells. Mesoporous Sr–Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr2+ into mesoporous SiO2 glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Keywords: Mesoporous Sr–Si glass; Drug delivery; Bioactivity; Bone repair; Scaffolds
Resumo:
Poly(lactide-co-glycolide) (PLGA) beads have been widely studied as a potential drug/protein carrier. The main shortcomings of PLGA beads are that they lack bioactivity and controllable drug-delivery ability, and their acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Akermanite (AK) (Ca(2) MgSi(2) O(7) ) is a novel bioactive ceramic which has shown excellent bioactivity and degradation in vivo. This study aimed to incorporate AK to PLGA beads to improve the physiochemical, drug-delivery, and biological properties of PLGA beads. The microstructure of beads was characterized by SEM. The effect of AK incorporating into PLGA beads on the mechanical strength, apatite-formation ability, the loading and release of BSA, and the proliferation, and differentiation of bone marrow stromal cells (BMSCs) was investigated. The results showed that the incorporation of AK into PLGA beads altered the anisotropic microporous structure into homogenous one and improved their compressive strength and apatite-formation ability in simulated body fluids (SBF). AK neutralized the acidic products from PLGA beads, leading to stable pH value of 7.4 in biological environment. AK led to a sustainable and controllable release of bovine serum albumin (BSA) in PLGA beads. The incorporation of AK into PLGA beads enhanced the proliferation and alkaline phosphatase activity of BMSCs. This study implies that the incorporation of AK into PLGA beads is a promising method to enhance their physiochemical and biological property. AK/PLGA composite beads are a potential bioactive drug-delivery system for bone tissue repair.
Resumo:
New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.
Resumo:
The use of mesoporous bioactive glasses (MBG) for drug delivery and bone tissue regeneration has grown significantly over the past 5 years. In this review, we highlight the recent advances made in the preparation of MBG particles, spheres, fibers and scaffolds. The advantages of MBG for drug delivery and bone scaffold applications are related to this material’s well-ordered mesopore channel structure, superior bioactivity, and the application for the delivery of both hydrophilic and hydrophobic drugs. A brief forward-looking perspective on the potential clinical applications of MBG in regenerative medicine is also discussed.
Resumo:
Hyperthermia and local drug delivery have been proposed the potential therapeutic approaches for bone defects resulting from malignant bone tumors. Development of bioactive materials with magnetic and drug-delivery properties may potentially meet this target. The aim of this study is to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermia and local-drug delivery application potentially. For this aim, Iron (Fe) containing MBG (Fe-MBG) scaffolds with hierarchically large pores (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been successfully prepared. The effect of Fe on the mesopore structure, physiochemical, magnetism, drug delivery and biological properties of MBG scaffolds has been systematically investigated. The results showed that the morphology of the mesopore varied from straight channels to curved fingerprint-like channels after incorporated parts of Fe into MBG scaffolds. The magnetism magnitude of MBG scaffolds can be tailored by controlling Fe contents. Furthermore, the incorporating of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and bone-relative gene (ALP and OCN) expression of human bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. The obtained Fe-MBG scaffolds also possessed high specific surface areas and sustained drug delivery. Therefore, Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunction of Fe-MBG scaffolds indicates that there is a great potential for Fe-MBG scaffolds to be used for the therapy and regeneration of large-bone defects caused by malignant bone tumors through the combination of hyperthermia, local drug delivery and their osteoconductivity.