991 resultados para beta regression
Resumo:
Abstract Alcohol dependence is a disease that impacts millions of individuals worldwide. There has been some progress with pharmacotherapy for alcohol-dependent individuals; however, there remains a critical need for the development of novel and additional therapeutic approaches. Alcohol and nicotine are commonly abused together, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Varenicline, a partial agonist at the alpha4beta2 nAChRs, reduces nicotine intake and was recently approved as a smoking cessation aid. We have investigated the role of varenicline in the modulation of ethanol consumption and seeking using three different animal models of drinking. We show that acute administration of varenicline, in doses reported to reduce nicotine reward, selectively reduced ethanol but not sucrose seeking using an operant self-administration drinking paradigm and also decreased voluntary ethanol but not water consumption in animals chronically exposed to ethanol for 2 months before varenicline treatment. Furthermore, chronic varenicline administration decreased ethanol consumption, which did not result in a rebound increase in ethanol intake when the varenicline was no longer administered. The data suggest that the alpha4beta2 nAChRs may play a role in ethanol-seeking behaviors in animals chronically exposed to ethanol. The selectivity of varenicline in decreasing ethanol consumption combined with its reported safety profile and mild side effects in humans suggest that varenicline may prove to be a treatment for alcohol dependence.
Resumo:
Background The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
Between 2001 and 2005, the US airline industry faced financial turmoil. At the same time, the European airline industry entered a period of substantive deregulation. This period witnessed opportunities for low-cost carriers to become more competitive in the market as a result of these combined events. To help assess airline performance in the aftermath of these events, this paper provides new evidence of technical efficiency for 42 national and international airlines in 2006 using the data envelopment analysis (DEA) bootstrap approach first proposed by Simar and Wilson (J Econ, 136:31-64, 2007). In the first stage, technical efficiency scores are estimated using a bootstrap DEA model. In the second stage, a truncated regression is employed to quantify the economic drivers underlying measured technical efficiency. The results highlight the key role played by non-discretionary inputs in measures of airline technical efficiency.
Resumo:
PURPOSE: To examine the visual predictors of falls and injurious falls among older adults with glaucoma. METHODS: Prospective falls data were collected for 71 community-dwelling adults with primary open-angle glaucoma, mean age 73.9 ± 5.7 years, for one year using monthly falls diaries. Baseline assessment of central visual function included high-contrast visual acuity and Pelli-Robson contrast sensitivity. Binocular integrated visual fields were derived from monocular Humphrey Field Analyser plots. Rate ratios (RR) for falls and injurious falls with 95% confidence intervals (CIs) were based on negative binomial regression models. RESULTS: During the one year follow-up, 31 (44%) participants experienced at least one fall and 22 (31%) experienced falls that resulted in an injury. Greater visual impairment was associated with increased falls rate, independent of age and gender. In a multivariate model, more extensive field loss in the inferior region was associated with higher rate of falls (RR 1.57, 95%CI 1.06, 2.32) and falls with injury (RR 1.80, 95%CI 1.12, 2.98), adjusted for all other vision measures and potential confounding factors. Visual acuity, contrast sensitivity, and superior field loss were not associated with the rate of falls; topical beta-blocker use was also not associated with increased falls risk. CONCLUSIONS: Falls are common among older adults with glaucoma and occur more frequently in those with greater visual impairment, particularly in the inferior field region. This finding highlights the importance of the inferior visual field region in falls risk and assists in identifying older adults with glaucoma at risk of future falls, for whom potential interventions should be targeted. KEY WORDS: glaucoma, visual field, visual impairment, falls, injury
Resumo:
In this paper we explore the ability of a recent model-based learning technique Receding Horizon Locally Weighted Regression (RH-LWR) useful for learning temporally dependent systems. In particular this paper investigates the application of RH-LWR to learn control of Multiple-input Multiple-output robot systems. RH-LWR is demonstrated through learning joint velocity and position control of a three Degree of Freedom (DoF) rigid body robot.
Resumo:
The motivation of the study stems from the results reported in the Excellence in Research for Australia (ERA) 2010 report. The report showed that only 12 universities performed research at or above international standards, of which, the Group of Eight (G8) universities filled the top eight spots. While performance of universities was based on number of research outputs, total amount of research income and other quantitative indicators, the measure of efficiency or productivity was not considered. The objectives of this paper are twofold. First, to provide a review of the research performance of 37 Australian universities using the data envelopment analysis (DEA) bootstrap approach of Simar and Wilson (2007). Second, to determine sources of productivity drivers by regressing the efficiency scores against a set of environmental variables.