93 resultados para bci


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il fatto che il pensiero sia più rapido della comunicazione verbale o scritta è un concetto ormai consolidato. Ricerche recenti, però, si stanno occupando di sviluppare nuove tecnologie in grado di tradurre l’attività neurale in parole o testi in tempo reale. È proprio questo il campo delle Real-time Silent Speech Brain-Computer Interfaces, ovvero sistemi di comunicazione alternativi, basati sulla registrazione e sull’interpretazione di segnali neurali, generati durante il tentativo di parlare o di scrivere. Queste innovazioni tecnologiche costituiscono un traguardo fondamentale per la vita delle persone con paralisi o con patologie neurologiche che determinano l’inabilità a comunicare. L’obiettivo di questo elaborato è quello di descrivere due applicazioni innovative nell’ambito delle Real-time Silent Speech-BCIs. I metodi di BCI confrontati nel presente elaborato sintetizzano il parlato attraverso la rilevazione invasiva o parzialmente invasiva dell’attività cerebrale. L’utilizzo di metodi invasivi per la registrazione dell’attività cerebrale è giustificato dal fatto che le performance di acquisizione del segnale ottenute sono tali da controbilanciare i rischi associati all’operazione chirurgica necessaria per l’impianto. Le tecniche descritte sfruttano delle Reti Neurali Ricorrenti (RNNs), che si sono dimostrate le più efficaci nel prevedere dati sequenziali. Gli studi presentati in questa tesi costituiscono un passaggio fondamentale nel progresso tecnologico per il ripristino della comunicazione in tempo reale e sono i primi a riportare prestazioni di sintesi paragonabili a quelle del linguaggio naturale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La lesione del midollo spinale (LM) è una complessa condizione fisica che racchiude in sé sfide di carattere biomedico nonché etico-giuridico. La complessità della LM nonché la diversificazione delle esperienze dei singoli soggetti affetti da LM rendono questo un topic di grande interesse per la ricerca biomedicale, in relazione a nuovi metodi di cura e di riabilitazione dei soggetti. In particolare, la sinergia tra i saperi medico, informatici e ingegneristici ha permesso di sviluppare nuove tecnologie di comunicazione e di controllo neurologico e motorio che, capaci di sopperire a deficit cerebrali e/o motori causati da LM, consentono ai pazienti di avere una qualità di vita sensibilmente migliore, anche in termini di autonomia. Tra queste nuove tecnologie assistive primeggiano per efficacia e frequenza di utilizzo le Brain Computer Interfaces (BCI), strumenti ingegneristici che, attraverso la misurazione e l’analisi di segnali provenienti dall’attività cerebrale, traducono il segnale registrato in specifici comandi, rappresentando per l’utente con LM un canale di comunicazione con l’ambiente esterno, alternativo alle normali vie neurali. In questo elaborato l’analisi di due sperimentazioni, una su scimmia l’altra su uomo, entrambi affetti da LM, con differenti sistemi di monitoraggio dell’attività neurale, ha permesso di evidenziare un limite della ricerca sul topic: nonostante i promettenti risultati ottenuti su primati non umani, il carattere invasivo del sistema BCI–EES rende difficile traslare la sperimentazione su uomo. La sperimentazione su LM pone delle sfide anche dal punto di vista etico: sebbene siano auspicati lo sviluppo e l’applicazione di metodi alternativi alla sperimentazione animale, l’impiego di primati non umani appare ancora una scelta obbligata nel campo della ricerca di soluzioni terapeutiche finalizzate al ripristino della funzione locomotoria, per via della stretta affinità in termini di conformazione fisica, genetica e anatomica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le interfacce cervello-macchina (BMIs) permettono di guidare devices esterni utilizzando segnali neurali. Le BMIs rappresentano un’importante tecnologia per tentare di ripristinare funzioni perse in patologie che interrompono il canale di comunicazione tra cervello e corpo, come malattie neurodegenerative o lesioni spinali. Di importanza chiave per il corretto funzionamento di una BCI è la decodifica dei segnali neurali per trasformarli in segnali idonei per guidare devices esterni. Negli anni sono stati implementati diversi tipi di algoritmi. Tra questi gli algoritmi di machine learning imparano a riconoscere i pattern neurali di attivazione mappando con grande efficienza l’input, possibilmente l’attività dei neuroni, con l’output, ad esempio i comandi motori per guidare una possibile protesi. Tra gli algoritmi di machine learning ci si è focalizzati sulle deep neural networks (DNN). Un problema delle DNN è l’elevato tempo di training. Questo infatti prevede il calcolo dei parametri ottimali della rete per minimizzare l’errore di predizione. Per ridurre questo problema si possono utilizzare le reti neurali convolutive (CNN), reti caratterizzate da minori parametri di addestramento rispetto ad altri tipi di DNN con maggiori parametri come le reti neurali ricorrenti (RNN). In questo elaborato è esposto uno studio esplorante l’utilizzo innovativo di CNN per la decodifica dell’attività di neuroni registrati da macaco sveglio mentre svolgeva compiti motori. La CNN risultante ha consentito di ottenere risultati comparabili allo stato dell’arte con un minor numero di parametri addestrabili. Questa caratteristica in futuro potrebbe essere chiave per l’utilizzo di questo tipo di reti all’interno di BMIs grazie ai tempi di calcolo ridotti, consentendo in tempo reale la traduzione di un segnale neurale in segnali per muovere neuroprotesi.