996 resultados para bacterial pathogenesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritis (OA) is the most common musculoskeletal disorder and represents a major health burden to society. In the course of the pathological development of OA, articular cartilage chondrocytes (ACCs) undergo atypical phenotype changes characterized by the expression of hypertrophic differentiation markers. Also, the adjacent subchondral bone shows signs of abnormal mineral density and enhanced production of bone turnover markers, indicative of osteoblast dysfunction. Collectively these findings indicate that the pathological changes typical of OA, involve alterations of the phenotypic properties of cells in both the subchondral bone and articular cartilage. However, the mechanism(s) by which these changes occur during OA development are not completely understood. The purpose of this project was to address the question of how subchondral bone osteoblasts (SBOs) and ACCs interact with each other with respect to regulation of respective cells’ phenotypic properties and in particular the involvement of mitogen activated protein kinase (MAPK) signalling pathways under normal and OA joint condition. We also endeavoured to test the influence of cross-talk between SBOs and ACCs isolated from normal and OA joint on matrix metalloproteinase (MMP) expression. For this purpose tissues from the knees of OA patients and normal controls were collected to isolate SBOs and ACCs. The cellular cross-talk of SBOs and ACCs were studied by means of both direct and indirect co-culture systems, which made it possible to identify the role of both membrane bound and soluble factors. Histology, immunohistochemistry, qRT-PCR, zymography, ELISA and western blotting were some of the techniques applied to distinguish the changes in the co-cultured vs. non co-cultured cells. The MAPK signalling pathways were probed by using targeted MAPK inhibitors, and their activity monitored by western blot analysis using phospho MAPK specific antibodies. Our co-culture studies demonstrated that OA ACCs enhanced the SBOs differentiation compared to normal ACCs. We demonstrated that OA ACCs induced these phenotypic changes in the SBOs via activating an ERK1/2 signalling pathway. The findings from this study thus provided clear evidence that OA ACCs play an integral role in altering the SBO phenotype. In the second study, we tested the influence of normal SBOs and OA SBOs on ACCs phenotype changes. The results showed that OA SBOs increased the hypertrophic gene expression in co-cultured ACCs compared to normal SBOs, a phenotype which is considered as pathological to the health and integrity of articular cartilage. It was demonstrated that these phenotype changes occurred via de-activation of p38 and activation of ERK1/2 signaling pathways. These findings suggest that the pathological interaction of OA SBOs with ACCs is mediated by cross-talking between ERK1/2 and p38 pathways, resulting in ACCs undergoing hypertrophic differentiation. Subsequent experiments to determine the effect on MMP regulation, of SBOs and ACCs cross-talk, revealed that co-culturing OA SBOs with ACCs significantly enhanced the proteolytic activity and expression of MMP-2 and MMP-9. In turn, co-culture of OA ACCs with SBOs led to abundant MMP-2 expression in SBOs. Furthermore, we showed that the addition of ERK1/2 and JNK inhibitors reversed the elevated MMP-2 and MMP-9 production which otherwise resulted from the interactions of OA SBOs-ACCs. Thus, this study has demonstrated that the altered interactions between OA SBOs-ACCs are capable of triggering the pathological pathways leading to degenerative changes seen in the osteoarthritic joint. In conclusion, the body of work presented in this dissertation has given clear in vitro evidence that the altered bi-directional communication of SBOs and ACCs may play a role in OA development and that this process was mediated by MAPK signalling pathways. Targeting these altered interactions by the use of MAPK inhibitors may provide the scientific rationale for the development of novel therapeutic strategies in the treatment and management of OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron (Fe) biogeochemistry is potentially of environmental significance in plantation-forested, subtropical coastal ecosystems where soil disturbance and seasonal water logging may lead to elevation of Fe mobilization and associated water quality deterioration. Using wet-chemical extraction and laboratory cultivation, we examined the occurrence of Fe forms and associated bacterial populations in diverse soils of a representative subtropical Australian coastal catchment (Poona Creek). Total reactive Fe was abundant throughout 0e30 cm soil cores, consisting primarily of crystalline forms in well-drained sand soils and water-logged loam soils, whereas in water-logged, low clay soils, over half of total reactive Fe was present in poorly-crystalline forms due to organic and inorganic complexation, respectively. Forestry practices such as plantation clear-felling and replanting, seasonal water logging and mineral soil properties significantly impacted soil organic carbon (C), potentially-bioavailable Fe pools and densities of S-, but not Fe-, bacterial populations. Bacterial Fe(III) reduction and abiotic Fe(II) oxidation, as well as chemolithotrophic S oxidation and aerobic, heterotrophic respiration were integral to catchment terrestrial FeeC cycling. This work demonstrates bacterial involvement in terrestrial Fe cycling in a subtropical coastal circumneutral-pH ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection in the developed world and the leading cause of preventable blindness worldwide. As reported by the World Health Organization in 2001, there are approximately 92 million new infections detected annually, costing health systems billions of dollars to treat not only the acute infection, but also to treat infection-associated sequelae. The majority of genital infections are asymptomatic, with 50-70% going undetected. Genital tract infections can be easily treated with antibiotics when detected. Lack of treatment can lead to the development of pelvic inflammatory disease, ectopic pregnancies and tubal factor infertility in women and epididymitis and prostatitis in men. With infection rates on the continual rise and the large number of infections going undetected, there is a need to develop an efficacious vaccine which prevents not only infection, but also the development of infection-associated pathology. Before a vaccine can be developed and administered, the pathogenesis of chlamydial infections needs to be fully understood. This includes the kinetics of ascending infection and the effects of inoculating dose on ascension and development of pathology. The first aim in this study was to examine these factors in a murine model. Female BALB/c mice were infected intravaginally with varying doses of C. muridarum, the mouse variant of human C. trachomatis, and the ascension of infection along the reproductive tract and the time-course of infection-associated pathology development, including inflammatory cell infiltration, pyosalpinx and hydrosalpinx, were determined. It was found that while the inoculating dose did affect the rate and degree of infection, it did not affect any of the pathological parameters examined. This highlighted that the sexual transmission dose may have minimal effect on the development of reproductive sequelae. The results of the first section enabled further studies presented here to use an optimal inoculating dose that would ascend the reproductive tract and cause pathology development, so that vaccine efficacy could be determined. There has been a large amount of research into the development of an efficacious vaccine against genital tract chlamydial infections, with little success. However, there have been no studies examining the effects of the timing of vaccination, including the effects of vaccination during an active genital infection, or after clearance of a previous infection. These are important factors that need to be examined, as it is not yet known whether immunization will enhance not only the individual's immune response, but also pathology development. It is also unknown whether any enhancement of the immune responses will cause the Chlamydia to enter a dormant, persistent state, and possibly further enhance any pathology development. The second section of this study aimed to determine if vaccination during an active genital tract infection, or after clearance of a primary infection, enhanced the murine immune responses and whether any enhanced or reduced pathology occurred. Naïve, actively infected, or previously infected animals were immunized intranasally or transcutaneously with the adjuvants cholera toxin and CpG-ODN in combination with either the major outer membrane protein (MOMP) of C. muridarum, or MOMP and ribonucleotide reductase small chain protein (NrdB) of C. muridarum. It was found that the systemic immune responses in actively or previously infected mice were altered in comparison to animals immunized naïve with the same combinations, however mucosal antibodies were not enhanced. It was also found that there was no difference in pathology development between any of the groups. This suggests that immunization of individuals who may have an asymptomatic infection, or may have been previously exposed to a genital infection, may not benefit from vaccination in terms of enhanced immune responses against re-exposure. The final section of this study aimed to determine if the vaccination regimes mentioned above caused in vivo persistence of C. muridarum in the upper reproductive tracts of mice. As there has been no characterization of C. muridarum persistence in vitro, either ultrastructurally or via transcriptome analysis, this was the first aim of this section. Once it had been shown that C. muridarum could be induced into a persistent state, the gene transcriptional profiles of the selected persistent marker genes were used to determine if persistent infections were indeed present in the upper reproductive tracts of the mice. We found that intranasal immunization during an active infection induced persistent infections in the oviducts, but not the uterine horns, and that intranasal immunization after clearance of infection, caused persistent infections in both the uterine horns and the oviducts of the mice. This is a significant finding, not only because it is the first time that C. muridarum persistence has been characterized in vitro, but also due to the fact that there is minimal characterization of in vivo persistence of any chlamydial species. It is possible that the induction of persistent infections in the reproductive tract might enhance the development of pathology and thereby enhance the risk of infertility, factors that need to be prevented by vaccination, not enhanced. Overall, this study has shown that the inoculating dose does not affect pathology development in the female reproductive tract of infected mice, but does alter the degree and rate of ascending infection. It has also been shown that intranasal immunization during an active genital infection, or after clearance of one, induces persistent infections in the uterine horns and oviducts of mice. This suggests that potential vaccine candidates will need to have these factors closely examined before progressing to clinical trials. This is significant, because if the same situation occurs in humans, a vaccine administered to an asymptomatic, or previously exposed individual may not afford any extra protection and may in fact enhance the risk of development of infection-associated sequelae. This suggests that a vaccine may serve the community better if administered before the commencement of sexual activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic disinfection of Enterobacter cloacae and Enterobacter coli using microwave (MW), convection hydrothermal (HT) and Degussa P25 titania was investigated in suspension and immobilized reactors. In suspension reactors, MW-treated TiO(2) was the most efficient catalyst (per unit weight of catalyst) for the disinfection of E. cloacae. However, HT-treated TiO(2) was approximately 10 times more efficient than MW or P25 titania for the disinfection of E. coli suspensions in surface water using the immobilized reactor. In immobilized experiments, using surface water a significant amount of photolysis was observed using the MW- and HT-treated films; however, disinfection on P25 films was primarily attributed to photocatalysis. Competitive action of inorganic ions and humic substances for hydroxyl radicals during photocatalytic experiments, as well as humic substances physically screening the cells from UV and hydroxyl radical attack resulted in low rates of disinfection. A decrease in colony size (from 1.5 to 0.3 mm) was noted during photocatalytic experiments. The smaller than average colonies were thought to occur during sublethal (•) OH and O(2) (•-) attack. Catalyst fouling was observed following experiments in surface water and the ability to regenerate the surface was demonstrated using photocatalytic degradation of oxalic acid as a model test system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human Ureaplasma species are the most frequently isolated bacteria from the upper genital tract of pregnant women and can cause clinically asymptomatic, intra-uterine infections, which are difficult to treat with antimicrobials. Ureaplasma infection of the upper genital tract during pregnancy has been associated with numerous adverse outcomes including preterm birth, chorioamnionitis and neonatal respiratory diseases. The mechanisms by which ureaplasmas are able to chronically colonise the amniotic fluid and avoid eradication by (i) the host immune response and (ii) maternally-administered antimicrobials, remain virtually unexplored. To address this gap within the literature, this study investigated potential mechanisms by which ureaplasmas are able to cause chronic, intra-amniotic infections in an established ovine model. In this PhD program of research the effectiveness of standard, maternal erythromycin for the treatment of chronic, intra-amniotic ureaplasma infections was evaluated. At 55 days of gestation pregnant ewes received an intra-amniotic injection of either: a clinical Ureaplasma parvum serovar 3 isolate that was sensitive to macrolide antibiotics (n = 16); or 10B medium (n = 16). At 100 days of gestation, ewes were then randomised to receive either maternal erythromycin treatment (30 mg/kg/day for four days) or no treatment. Ureaplasmas were isolated from amniotic fluid, chorioamnion, umbilical cord and fetal lung specimens, which were collected at the time of preterm delivery of the fetus (125 days of gestation). Surprisingly, the numbers of ureaplasmas colonising the amniotic fluid and fetal tissues were not different between experimentally-infected animals that received erythromycin treatment or infected animals that did not receive treatment (p > 0.05), nor were there any differences in fetal inflammation and histological chorioamnionitis between these groups (p > 0.05). These data demonstrate the inability of maternal erythromycin to eradicate intra-uterine ureaplasma infections. Erythromycin was detected in the amniotic fluid of animals that received antimicrobial treatment (but not in those that did not receive treatment) by liquid chromatography-mass spectrometry; however, the concentrations were below therapeutic levels (<10 – 76 ng/mL). These findings indicate that the ineffectiveness of standard, maternal erythromycin treatment of intra-amniotic ureaplasma infections may be due to the poor placental transfer of this drug. Subsequently, the phenotypic and genotypic characteristics of ureaplasmas isolated from the amniotic fluid and chorioamnion of pregnant sheep after chronic, intra-amniotic infection and low-level exposure to erythromycin were investigated. At 55 days of gestation twelve pregnant ewes received an intra-amniotic injection of a clinical U. parvum serovar 3 isolate, which was sensitive to macrolide antibiotics. At 100 days of gestation, ewes received standard maternal erythromycin treatment (30 mg/kg/day for four days, n = 6) or saline (n = 6). Preterm fetuses were surgically delivered at 125 days of gestation and ureaplasmas were cultured from the amniotic fluid and the chorioamnion. The minimum inhibitory concentrations (MICs) of erythromycin, azithromycin and roxithromycin were determined for cultured ureaplasma isolates, and antimicrobial susceptibilities were different between ureaplasmas isolated from the amniotic fluid (MIC range = 0.08 – 1.0 mg/L) and chorioamnion (MIC range = 0.06 – 5.33 mg/L). However, the increased resistance to macrolide antibiotics observed in chorioamnion ureaplasma isolates occurred independently of exposure to erythromycin in vivo. Remarkably, domain V of the 23S ribosomal RNA gene (which is the target site of macrolide antimicrobials) of chorioamnion ureaplasmas demonstrated significant variability (125 polymorphisms out of 422 sequenced nucleotides, 29.6%) when compared to the amniotic fluid ureaplasma isolates and the inoculum strain. This sequence variability did not occur as a consequence of exposure to erythromycin, as the nucleotide substitutions were identical between chorioamnion ureaplasmas isolated from different animals, including those that did not receive erythromycin treatment. We propose that these mosaic-like 23S ribosomal RNA gene sequences may represent gene fragments transferred via horizontal gene transfer. The significant differences observed in (i) susceptibility to macrolide antimicrobials and (ii) 23S ribosomal RNA sequences of ureaplasmas isolated from the amniotic fluid and chorioamnion suggests that the anatomical site from which they were isolated may exert selective pressures that alter the socio-microbiological structure of the bacterial population, by selecting for genetic changes and altered antimicrobial susceptibility profiles. The final experiment for this PhD examined antigenic size variation of the multiple banded antigen (MBA, a surface-exposed lipoprotein and predicted ureaplasmal virulence factor) in chronic, intra-amniotic ureaplasma infections. Previously defined ‘virulent-derived’ and ‘avirulent-derived’ clonal U. parvum serovar 6 isolates (each expressing a single MBA protein) were injected into the amniotic fluid of pregnant ewes (n = 20) at 55 days of gestation, and amniotic fluid was collected by amniocentesis every two weeks until the time of near-term delivery of the fetus (at 140 days of gestation). Both the avirulent and virulent clonal ureaplasma strains generated MBA size variants (ranging in size from 32 – 170 kDa) within the amniotic fluid of pregnant ewes. The mean number of MBA size variants produced within the amniotic fluid was not different between the virulent (mean = 4.2 MBA variants) and avirulent (mean = 4.6 MBA variants) ureaplasma strains (p = 0.87). Intra-amniotic infection with the virulent strain was significantly associated with the presence of meconium-stained amniotic fluid (p = 0.01), which is an indicator of fetal distress in utero. However, the severity of histological chorioamnionitis was not different between the avirulent and virulent groups. We demonstrated that ureaplasmas were able to persist within the amniotic fluid of pregnant sheep for 85 days, despite the host mounting an innate and adaptive immune response. Pro-inflammatory cytokines (interleukin (IL)-1â, IL-6 and IL-8) were elevated within the chorioamnion tissue of pregnant sheep from both the avirulent and virulent treatment groups, and this was significantly associated with the production of anti-ureaplasma IgG antibodies within maternal sera (p < 0.05). These findings suggested that the inability of the host immune response to eradicate ureaplasmas from the amniotic cavity may be due to continual size variation of MBA surface-exposed epitopes. Taken together, these data confirm that ureaplasmas are able to cause long-term in utero infections in a sheep model, despite standard antimicrobial treatment and the development of a host immune response. The overall findings of this PhD project suggest that ureaplasmas are able to cause chronic, intra-amniotic infections due to (i) the limited placental transfer of erythromycin, which prevents the accumulation of therapeutic concentrations within the amniotic fluid; (ii) the ability of ureaplasmas to undergo rapid selection and genetic variation in vivo, resulting in ureaplasma isolates with variable MICs to macrolide antimicrobials colonising the amniotic fluid and chorioamnion; and (iii) antigenic size variation of the MBA, which may prevent eradication of ureaplasmas by the host immune response and account for differences in neonatal outcomes. The outcomes of this program of study have improved our understanding of the biology and pathogenesis of this highly adapted microorganism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Preclinical and clinical data suggest that lipid biology is integral to brain development and neurodegeneration. Both aspects are proposed as being important in the pathogenesis of schizophrenia. The purpose of this paper is to examine the implications of lipid biology, in particular the role of essential fatty acids (EFA), for schizophrenia. Methods: Medline databases were searched from 1966 to 2001 followed by the crosschecking of references. Results: Most studies investigating lipids in schizophrenia described reduced EFA, altered glycerophospholipids and an increased activity of a calcium-independent phospholipase A2 in blood cells and in post-mortem brain tissue. Additionally, in vivo brain phosphorus-31 Magnetic Resonance Spectroscopy (31P-MRS) demonstrated lower phosphomonoesters (implying reduced membrane precursors) in first- and multi-episode patients. In contrast, phosphodiesters were elevated mainly in first-episode patients (implying increased membrane breakdown products), whereas inconclusive results were found in chronic patients. EFA supplementation trials in chronic patient populations with residual symptoms have demonstrated conflicting results. More consistent results were observed in the early and symptomatic stages of illness, especially if EFA with a high proportion of eicosapentaenoic acid was used. Conclusion: Peripheral blood cell, brain necropsy and 31P-MRS analysis reveal a disturbed lipid biology, suggesting generalized membrane alterations in schizophrenia. 31P-MRS data suggest increased membrane turnover at illness onset and persisting membrane abnormalities in established schizophrenia. Cellular processes regulating membrane lipid metabolism are potential new targets for antipsychotic drugs and might explain the mechanism of action of treatments such as eicosapentaenoic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the septic work-up of 194 neonates at Women's College Hospital, Toronto, showed that the only antepartum condition predicting neonatal sepsis was the mother being on antibiotics. The only postnatal condition predicting sepsis was a maternal postpartum white blood cell count over 11,000. The average cost for tests for a septic work-up in these 194 mother-neonate pairs was $71.48 (Canadian dollars), and the average cost of tests to find a septic case was $1,066.77.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF) cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid) contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%). We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reason why a sustained high concentration of insulin induces laminitis in horses remains unclear. Cell proliferation occurs in the lamellae during insulin-induced laminitis and in other species high concentrations of insulin can activate receptors for the powerful cell mitogen, insulin-like growth factor (IGF)-1. The first aim of this study was to determine if IGF-1 receptors (IGF-1R) are activated in the hoof during insulin-induced laminitis. Gene expression for IGF-1R and the insulin receptor (InsR) was measured using qRT-PCR, in lamellar tissue from control horses and from horses undergoing a prolonged euglycaemic, hyperinsulinaemic clamp (p-EHC), during the mid-developmental (24 h) and acute (46 h) phases of insulin-induced laminitis. Gene expression for both receptors was decreased 13–32-fold (P < 0.05) at both time-points in the insulin-treated horses. A second aim was to determine if the down-regulation of the receptor genes could be accounted for by an increase in circulating IGF-1. Serum IGF-1 was measured at 0, 10, 25 and 46 h post-treatment in horses given a p-EHC for approximately 46 h, and in matched controls administered a balanced, electrolyte solution. There was no increase in serum IGF-1 concentrations during the p-EHC, consistent with down-regulation of both receptors by insulin. Stimulation of the IGF-1R by insulin may lead to inappropriate lamellar epidermal cell proliferation and lamellar weakening, a potential mechanism for hyperinsulinaemic laminitis. Targeting this receptor may provide insights into the pathogenesis or identify a novel therapy for hyperinsulinaemic laminitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research into hyperinsulinemic laminitis has progressed significantly in recent years with the use of the prolonged-euglycemic, hyperinsulinemic clamp (p-EHC). Previous investigations of laminitis pathophysiology have focused on digital vascular dysfunction, inflammation, altered glucose metabolism within the lamellae, and lamellar basement membrane breakdown by metalloproteinases. The etiopathogenesis of laminitis occurring in association with hyperinsulinemia is yet to be fully characterized, but it may not involve these mechanisms. Insulin stimulates cellular proliferation and can also affect other body systems, such as the insulin-like growth factor (IGF) system. Insulin-like growth factor-1 (IGF-1) is structurally homologous to insulin and, like insulin, binds with strong affinity to a specific tyrosine kinase receptor on the cell surface to produce its effects, which include promoting cell proliferation. Receptors for IGF-1 (IGF-1R) are present in the lamellar epidermis. An alternative theory for the pathogenesis of hyperinsulinemic laminitis is that uncontrolled cell proliferation, mediated through both the insulin receptor (InsR) and IGF-1R, leads to lengthening, weakening, and failure of the lamellae. An analysis of the proliferative activity of lamellar epidermal cells during the developmental and acute phases of hyperinsulinemic laminitis, and lamellar gene expression of the InsR and IGF-1R was undertaken.