896 resultados para automated proof


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis opens up the design space for awareness research in CSCW and HCI. By challenging the prevalent understanding of roles in awareness processes and exploring different mechanisms for actively engaging users in the awareness process, this thesis provides a better understanding of the complexity of these processes and suggests practical solutions for designing and implementing systems that support active awareness. Mutual awareness, a prominent research topic in the fields of Computer-Supported Cooperative Work (CSCW) and Human-Computer Interaction (HCI) refers to a fundamental aspect of a person’s work: their ability to gain a better understanding of a situation by perceiving and interpreting their co-workers actions. Technologically-mediated awareness, used to support co-workers across distributed settings, distinguishes between the roles of the actor, whose actions are often limited to being the target of an automated data gathering processes, and the receiver, who wants to be made aware of the actors’ actions. This receiver-centric view of awareness, focusing on helping receivers to deal with complex sets of awareness information, stands in stark contrast to our understanding of awareness as social process involving complex interactions between both actors and receivers. It fails to take into account an actors’ intimate understanding of their own activities and the contribution that this subjective understanding could make in providing richer awareness information. In this thesis I challenge the prevalent receiver-centric notion of awareness, and explore the conceptual foundations, design, implementation and evaluation of an alternative active awareness approach by making the following five contributions. Firstly, I identify the limitations of existing awareness research and solicit further evidence to support the notion of active awareness. I analyse ethnographic workplace studies that demonstrate how actors engage in an intricate interplay involving the monitoring of their co-workers progress and displaying aspects of their activities that may be of relevance to others. The examination of a large body of awareness research reveals that while disclosing information is a common practice in face-to-face collaborative settings it has been neglected in implementations of technically mediated awareness. Based on these considerations, I introduce the notion of intentional disclosure to describe the action of users actively and deliberately contributing awareness information. I consider challenges and potential solutions for the design of active awareness. I compare a range of systems, each allowing users to share information about their activities at various levels of detail. I discuss one of the main challenges to active awareness: that disclosing information about activities requires some degree of effort. I discuss various representations of effort in collaborative work. These considerations reveal that there is a trade-off between the richness of awareness information and the effort required to provide this information. I propose a framework for active awareness, aimed to help designers to understand the scope and limitations of different types of intentional disclosure. I draw on the identified richness/effort trade-off to develop two types of intentional disclosure, both of which aim to facilitate the disclosure of information while reducing the effort required to do so. For both of these approaches, direct and indirect disclosure, I delineate how they differ from related approaches and define a set of design criteria that is intended to guide their implementation. I demonstrate how the framework of active awareness can be practically applied by building two proof-of-concept prototypes that implement direct and indirect disclosure respectively. AnyBiff, implementing direct disclosure, allows users to create, share and use shared representations of activities in order to express their current actions and intentions. SphereX, implementing indirect disclosure, represents shared areas of interests or working context, and links sets of activities to these representations. Lastly, I present the results of the qualitative evaluation of the two prototypes and analyse the results with regard to the extent to which they implemented their respective disclosure mechanisms and supported active awareness. Both systems were deployed and tested in real world environments. The results for AnyBiff showed that users developed a wide range of activity representations, some unanticipated, and actively used the system to disclose information. The results further highlighted a number of design considerations relating to the relationship between awareness and communication, and the role of ambiguity. The evaluation of SphereX validated the feasibility of the indirect disclosure approach. However, the study highlighted the challenges of implementing cross-application awareness support and translating the concept to users. The study resulted in design recommendations aimed to improve the implementation of future systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to dispersed information resources and a vast amount of manual processing of unstructured information, accurate point-of-care diagnosis is often difficult. Aims The aim of this research is to report initial experimental evaluation of a clinician-informed automated method for the issue of initial misdiagnoses associated with delayed receipt of unstructured radiology reports. Method A method was developed that resembles clinical reasoning for identifying limb abnormalities. The method consists of a gazetteer of keywords related to radiological findings; the method classifies an X-ray report as abnormal if it contains evidence contained in the gazetteer. A set of 99 narrative reports of radiological findings was sourced from a tertiary hospital. Reports were manually assessed by two clinicians and discrepancies were validated by a third expert ED clinician; the final manual classification generated by the expert ED clinician was used as ground truth to empirically evaluate the approach. Results The automated method that attempts to individuate limb abnormalities by searching for keywords expressed by clinicians achieved an F-measure of 0.80 and an accuracy of 0.80. Conclusion While the automated clinician-driven method achieved promising performances, a number of avenues for improvement were identified using advanced natural language processing (NLP) and machine learning techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated process discovery techniques aim at extracting process models from information system logs. Existing techniques in this space are effective when applied to relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate models when confronted to logs with high variability. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. This leads to a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity and low fitness. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically using subprocess extraction. Splitting is performed in a controlled manner in order to achieve user-defined complexity or fitness thresholds. Experiments on real-life logs show that the technique produces collections of models substantially smaller than those extracted by applying existing trace clustering techniques, while allowing the user to control the fitness of the resulting models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operation of the law rests on the selection of an account of the facts. Whether this involves prediction or postdiction, it is not possible to achieve certainty. Any attempt to model the operation of the law completely will therefore raise questions of how to model the process of proof. In the selection of a model a crucial question will be whether the model is to be used normatively or descriptively. Focussing on postdiction, this paper presents and contrasts the mathematical model with the story model. The former carries the normative stamp of scientific approval, whereas the latter has been developed by experimental psychologists to describe how humans reason. Neil Cohen's attempt to use a mathematical model descriptively provides an illustration of the dangers in not clearly setting this parameter of the modelling process. It should be kept in mind that the labels 'normative' and 'descriptive' are not eternal. The mathematical model has its normative limits, beyond which we may need to critically assess models with descriptive origins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faunal vocalisations are vital indicators for environmental change and faunal vocalisation analysis can provide information for answering ecological questions. Therefore, automated species recognition in environmental recordings has become a critical research area. This thesis presents an automated species recognition approach named Timed and Probabilistic Automata. A small lexicon for describing animal calls is defined, six algorithms for acoustic component detection are developed, and a series of species recognisers are built and evaluated.The presented automated species recognition approach yields significant improvement on the analysis performance over a real world dataset, and may be transferred to commercial software in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Oates v Cootes Tanker Service Pty Ltd [2005] QSC 213, Fryberg J considered some interesting questions of construction in relation to the rule requiring the plaintiff to provide a statement of loss and damage in personal injuries proceedings (UCPR r 548) and the rule in relation to the giving of expert evidence (UCPR r427)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a preliminary analysis of an autonomous uncooperative collision avoidance strategy for unmanned aircraft using image-based visual control. Assuming target detection, the approach consists of three parts. First, a novel decision strategy is used to determine appropriate reference image features to track for safe avoidance. This is achieved by considering the current rules of the air (regulations), the properties of spiral motion and the expected visual tracking errors. Second, a spherical visual predictive control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about the object. Lastly, a stopping decision based on thresholding a cost function is used to determine when to stop the avoidance behaviour. The approach does not require estimation of range or time to collision, and instead relies on tuning two mutually exclusive decision thresholds to ensure satisfactory performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was conducted in the area of Clinical and Health Psychology. The study involved the development and evaluation of a novel, web-based program aimed to improve Type 2 diabetes self-management and mood. The program was developed as an original technological intervention aimed to improve access to support for rural and remote communities, and is currently being trialled across Australia with a larger sample size. The researcher aims to continue research into the field of clinical psychology, and in particular is interested in working on further interventions to support those with comorbid physical and mental health conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Prescription medicine samples provided by pharmaceutical companies are predominantly newer and more expensive products. The range of samples provided to practices may not represent the drugs that the doctors desire to have available. Few studies have used a qualitative design to explore the reasons behind sample use. Objective The aim of this study was to explore the opinions of a variety of Australian key informants about prescription medicine samples, using a qualitative methodology. Methods Twenty-three organizations involved in quality use of medicines in Australia were identified, based on the authors' previous knowledge. Each organization was invited to nominate 1 or 2 representatives to participate in semistructured interviews utilizing seeding questions. Each interview was recorded and transcribed verbatim. Leximancer v2.25 text analysis software (Leximancer Pty Ltd., Jindalee, Queensland, Australia) was used for textual analysis. The top 10 concepts from each analysis group were interrogated back to the original transcript text to determine the main emergent opinions. Results A total of 18 key interviewees representing 16 organizations participated. Samples, patient, doctor, and medicines were the major concepts among general opinions about samples. The concept drug became more frequent and the concept companies appeared when marketing issues were discussed. The Australian Pharmaceutical Benefits Scheme and cost were more prevalent in discussions about alternative sample distribution models, indicating interviewees were cognizant of budgetary implications. Key interviewee opinions added richness to the single-word concepts extracted by Leximancer. Conclusions Participants recognized that prescription medicine samples have an influence on quality use of medicines and play a role in the marketing of medicines. They also believed that alternative distribution systems for samples could provide benefits. The cost of a noncommercial system for distributing samples or starter packs was a concern. These data will be used to design further research investigating alternative models for distribution of samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-pulse tests are commonly used as a method for assessing the switching performance of power semiconductor switches in a clamped inductive switching application. Data generated from these tests are typically in the form of sampled waveform data captured using an oscilloscope. In cases where it is of interest to explore a multi-dimensional parameter space and corresponding result space it is necessary to reduce the data into key performance metrics via feature extraction. This paper presents techniques for the extraction of switching performance metrics from sampled double-pulse waveform data. The reported techniques are applied to experimental data from characterisation of a cascode gate drive circuit applied to power MOSFETs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The aim of the study was to determine the association, agreement, and detection capability of manual, semiautomated, and fully automated methods of corneal nerve fiber length (CNFL) quantification of the human corneal subbasal nerve plexus (SNP). Methods Thirty-three participants with diabetes and 17 healthy controls underwent laser scanning corneal confocal microscopy. Eight central images of the SNP were selected for each participant and analyzed using manual (CCMetrics), semiautomated (NeuronJ), and fully automated (ACCMetrics) software to quantify the CNFL. Results For the entire cohort, mean CNFL values quantified by CCMetrics, NeuronJ, and ACCMetrics were 17.4 ± 4.3 mm/mm2, 16.0 ± 3.9 mm/mm2, and 16.5 ± 3.6 mm/mm2, respectively (P < 0.01). CNFL quantified using CCMetrics was significantly higher than those obtained by NeuronJ and ACCMetrics (P < 0.05). The 3 methods were highly correlated (correlation coefficients 0.87–0.98, P < 0.01). The intraclass correlation coefficients were 0.87 for ACCMetrics versus NeuronJ and 0.86 for ACCMetrics versus CCMetrics. Bland–Altman plots showed good agreement between the manual, semiautomated, and fully automated analyses of CNFL. A small underestimation of CNFL was observed using ACCMetrics with increasing the amount of nerve tissue. All 3 methods were able to detect CNFL depletion in diabetic participants (P < 0.05) and in those with peripheral neuropathy as defined by the Toronto criteria, compared with healthy controls (P < 0.05). Conclusions Automated quantification of CNFL provides comparable neuropathy detection ability to manual and semiautomated methods. Because of its speed, objectivity, and consistency, fully automated analysis of CNFL might be advantageous in studies of diabetic neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A major challenge for assessing students’ conceptual understanding of STEM subjects is the capacity of assessment tools to reliably and robustly evaluate student thinking and reasoning. Multiple-choice tests are typically used to assess student learning and are designed to include distractors that can indicate students’ incomplete understanding of a topic or concept based on which distractor the student selects. However, these tests fail to provide the critical information uncovering the how and why of students’ reasoning for their multiple-choice selections. Open-ended or structured response questions are one method for capturing higher level thinking, but are often costly in terms of time and attention to properly assess student responses. Purpose: The goal of this study is to evaluate methods for automatically assessing open-ended responses, e.g. students’ written explanations and reasoning for multiple-choice selections. Design/Method: We incorporated an open response component for an online signals and systems multiple-choice test to capture written explanations of students’ selections. The effectiveness of an automated approach for identifying and assessing student conceptual understanding was evaluated by comparing results of lexical analysis software packages (Leximancer and NVivo) to expert human analysis of student responses. In order to understand and delineate the process for effectively analysing text provided by students, the researchers evaluated strengths and weakness for both the human and automated approaches. Results: Human and automated analyses revealed both correct and incorrect associations for certain conceptual areas. For some questions, that were not anticipated or included in the distractor selections, showing how multiple-choice questions alone fail to capture the comprehensive picture of student understanding. The comparison of textual analysis methods revealed the capability of automated lexical analysis software to assist in the identification of concepts and their relationships for large textual data sets. We also identified several challenges to using automated analysis as well as the manual and computer-assisted analysis. Conclusions: This study highlighted the usefulness incorporating and analysing students’ reasoning or explanations in understanding how students think about certain conceptual ideas. The ultimate value of automating the evaluation of written explanations is that it can be applied more frequently and at various stages of instruction to formatively evaluate conceptual understanding and engage students in reflective

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automated melanoma diagnosis system, the so-called Skin Polar-probe, was developed to improve the chances of early detection of skin cancers and help save the lives of melanoma victims. The system will offer unique benefits to aid early detection of melanoma - the key to reducing deaths caused by this cancer.