995 resultados para authigenic pyrite
Resumo:
Inversion of isotopic composition in the SO4(2-)-H2S system is shown to be universal in Neoeuxine sediments and an explanation of its occurrence is proposed. Change in isotopic composition of sulfate sulfur in Black Sea waters over last 10-15 thousand years is reconstructed. Periods of alteration between aerobic and anaerobic situations are identified, the beginning of entry of Mediterranean waters into the basin is dated, presence of authigenic carbonates in sediments of the sea is established and amounts are determined. Methane generation from carbon dioxide is shown to have been replaced by its generation from acetate in the paleo-Black Sea period.
Resumo:
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ~19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ~12 m. Molar P/Fe ratios are then relatively constant to a depth of ~35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.
Resumo:
The western flank of the Great Bahama Bank, drilled during ODP Leg 166 at seven sites, represents a prograding carbonate sequence from late Oligocene to Holocene [Eberli et al., Proc. ODP Init. Reports 166 (1997)]. The signatures of the detrital input and of diagenetic alteration are evident in clay enriched intervals from the most distal Sites 1006 and 1007 in the Straits of Florida. Mineralogical and chemical investigations (XRD, TEM, SEM, ICP-MS) run on bulk rocks and on the clay fractions enable the origin and evolution of silicate parageneses to be characterized. Plio-Pleistocene silt and clay interbeds contain detrital clay assemblages comprising chlorite, illite, interstratified illite smectite, smectite, kaolinite and palygorskite. The greater smectite input within late Pliocene units than in Pleistocene oozes may relate either varying source areas or change in paleoclimatic conditions and weathering intensity. The clay intervals from Miocene-upper Oligocene wackestone sections are fairly different, with prevalent smectite in the fine fraction, whose high crystallinity and Mg contents that point towards an authigenic origin. The lower Miocene section, below 1104 mbsf, at depths where compaction features are well developed, is particularly characterized by abundant authigenic Na-K-clinoptilolite filling foraminifer tests. The authigenic smectite and clinoptilolite paragenesis is recorded by the chemical trends, both of the sediment and the interstitial fluid. This diagenetic evolution implies Si- and Mg rich fluids circulating in deeper and older sequences. For lack of any local volcaniclastic input, the genesis of zeolite and the terms of water rock interaction are discussed. The location of the diagenetic front correlates with that of the seismic sequence boundary P2 dated as 23.2 Ma. This correspondence may allow the chronostratigraphic significance of some specific seismic reflections to be reassessed.
Resumo:
Several carbonaceous layers or fragments were recovered from sediments of Sites 1150 and 1151 on the deep-sea terrace of the Japan Trench during Leg 186. The X-ray diffraction analysis (XRD) data indicate that these are predominantly dolomitic. In this study, carbon and oxygen isotopes of these carbonates recovered at Sites 1150 and 1151 are presented. The oxygen isotope ratios of the dolomites analyzed range from +0.4 per mil to +4.1 per mil vs. Peedee formation belemnite (PDB) and those of calcites from +0.6 per mil to +2.8 per mil PDB. The isotopic composition of carbon varies from -7.0 per mil to +12.3 per mil PDB in dolomite and from -13.4 per mil to -24.1 per mil PDB in calcite. The wide range of carbon isotopic compositions indicates that the carbonate samples were formed by the decomposition of organic matter through reactions such as oxidation, sulfate reduction, and methane formation during diagenesis.
Resumo:
An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (~1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative d13C values of these carbonates (>-43.5 per mill PDB) indicate methane as major carbon source; d18O values between 4.04 and 5.88 per mill PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to >49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO4**2- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (d34S: 21.0-38.6 per mill CDT; d18O: 9.0-17.6 per mill SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with 'normal' seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.
Resumo:
We discuss the provenance of minerals detected by X-ray-diffraction analyses of sediments of Sites 504 and 505 of Deep Sea Drilling Project Leg 69. These are X-ray-amorphous material, opal-CT, calcite, quartz, feldspar, apatite, smectite, illite, kaolinite, magnetite, maghemite, pyrite, marcasite, barite, sepiolite, and clinoptilolite. Authigenic marcasite and clinoptilolite together with opal-CT are restricted to Site 504, indicating the special diagenetic conditions related to relatively high sediment temperatures at this site. Marcasite formation is likely dependent on the relatively low pH values of <7.1 found in interstitial waters of Site 504 sediments below 50 meters sub-bottom. Clinoptilolite evidently was formed by diagenetic alteration of rhyolitic volcanic glass or smectite plus biogenic silica within the chalk-limestone-chert sequence of Site 504, where opal-CT also reflects a high degree of silica dissolution and reprecipitation. This was a consequence of high temperatures (50-55 °C) at the base of the sediment column.
Resumo:
At convergent margins, fluids rise through the forearc in response to consolidation of the upper plate and dewatering of the subducting plate, and produce various cold-seep-related features on the seafloor (mud diapirs, mud mounds). At the Central American forearc, authigenic carbonates precipitated from rising fluids within such structures during active venting while typical mixed-mud sediments were ejected onto the surrounding seafloor where they became intercalated with normal pelagic background sediments, indicating that mud mounds evolved unsteadily through alternating active and inactive phases. Intercalated regional ash layers from Plinian eruptions at the Central American volcanic arc provide time marks that constrain the ages of mud ejection activity. U/Th dating of drill core samples of authigenic carbonate caps of mud mounds yields ages agreeing well with those constrained by ash layers and showing that carbonate caps grow inward rather than outward during active venting. Both dating approaches show that offshore Nicaragua and Costa Rica (1) active and inactive phases can occur simultaneously at neighboring mounds, (2) mounds along the forearc have individual histories of activity, but there are distinct time intervals when nearly all mounds have been active or inactive, (3) lifetimes of mounds reach several hundred thousand years, and (4) highly active periods last 10-50 k.y. with intervening periods of >10 k.y. of relative quiescence.
Resumo:
Authigenic carbonates were collected from methane seeps at Hydrate Hole at 3113 m water depth and Diapir Field at 2417 m water depth on the northern Congo deep-sea fan during RV Meteor cruise M56. The carbonate samples analyzed here are nodules, mainly composed of aragonite and high-Mg calcite. Abundant putative microbial carbonate rods and associated pyrite framboids were recognized within the carbonate matrix. The d13C values of the Hydrate Hole carbonates range from -62.5 permil to -46.3 permil PDB, while the d13C values of the Diapir Field carbonate are somewhat higher, ranging from -40.7 permil to -30.7 permil PDB, indicating that methane is the predominant carbon source at both locations. Relative enrichment of 18O (d18O values as high as 5.2 permil PDB) are probably related to localized destabilization of gas hydrate. The total content of rare earth elements (REE) of 5% HNO3-treated solutions derived from carbonate samples varies from 1.6 ppm to 42.5 ppm. The shale-normalized REE patterns all display positive Ce anomalies (Ce/Ce* > 1.3), revealing that the carbonates precipitated under anoxic conditions. A sample from Hydrate Hole shows a concentric lamination, corresponding to fluctuations in d13C values as well as trace elements contents. These fluctuations are presumed to reflect changes of seepage flux.
Resumo:
High Li concentrations, up to a maximum of 1155 µM are observed in the pore fluids of the Peru convergent margin slope sediments. At Ocean Drilling Program Sites 683 and 685 (ca. 9°S), the Li concentration depth gradients are twice as steep as at Site 682 and 688 (ca. 11°S). Within the sediments, the most important Li sources are from aluminosilicate minerals. Biogenic opal-A contains little Li and thus dilutes the Li concentration of the bulk sediments. The sediment compositions and the thermal regimes are similar at 9° and 11°S, suggesting there is an additional, non-sedimentary source for the observed high Li concentrations in the northern pore fluids. At 9°S, the 87Sr/86Sr ratios reach a maximum value of 0.709958. The observed radiogenic 87Sr/86Sr values in the pore fluids support the suggestion that the additional Li may derive from exchange reactions with underlying continental crust. The high concentrations of Li at 11°S may derive from basalt alteration at moderate to high temperatures, as suggested by the non-radiogenic 87Sr/86Sr ratios in these pore fluids, which reach a minimum value of 0.707218. Based on (1) Li concentrations in the pore fluids in slope sediments from Peru and several other margins, and (2) an approximate estimate of fluid flux from continental margins into the ocean, continental margins provide an estimated 1 to 3 * 10**10 moles Li/yr to the ocean. This source of oceanic Li, which has not been considered previously, is of the same order of magnitude as some estimates of hydrothermal and river Li fluxes and may have important consequences for the oceanic Li isotope budget. The sink is unknown for this newly discovered and possibly large Li source, but it may be more pervasive low-temperature alteration of oceanic basement than previously estimated, or burial of mineral phases, such as authigenic clay minerals, or metal oxyhydroxides which may be Li-rich.