904 resultados para audio-visual automatic speech recognition
Resumo:
Para compor um sistema de Reconhecimento Automático de Voz, pode ser utilizada uma tarefa chamada Classificação Fonética, onde a partir de uma amostra de voz decide-se qual fonema foi emitido por um interlocutor. Para facilitar a classificação e realçar as características mais marcantes dos fonemas, normalmente, as amostras de voz são pré- processadas através de um fronl-en'L Um fron:-end, geralmente, extrai um conjunto de parâmetros para cada amostra de voz. Após este processamento, estes parâmetros são insendos em um algoritmo classificador que (já devidamente treinado) procurará decidir qual o fonema emitido. Existe uma tendência de que quanto maior a quantidade de parâmetros utilizados no sistema, melhor será a taxa de acertos na classificação. A contrapartida para esta tendência é o maior custo computacional envolvido. A técnica de Seleção de Parâmetros tem como função mostrar quais os parâmetros mais relevantes (ou mais utilizados) em uma tarefa de classificação, possibilitando, assim, descobrir quais os parâmetros redundantes, que trazem pouca (ou nenhuma) contribuição à tarefa de classificação. A proposta deste trabalho é aplicar o classificador SVM à classificação fonética, utilizando a base de dados TIMIT, e descobrir os parâmetros mais relevantes na classificação, aplicando a técnica Boosting de Seleção de Parâmetros.
Resumo:
Este trabalho visa propor uma solução contendo um sistema de reconhecimento de fala automático em nuvem. Dessa forma, não há necessidade de um reconhecedor sendo executado na própria máquina cliente, pois o mesmo estará disponível através da Internet. Além do reconhecimento automático de voz em nuvem, outra vertente deste trabalho é alta disponibilidade. A importância desse tópico se d´a porque o ambiente servidor onde se planeja executar o reconhecimento em nuvem não pode ficar indisponível ao usuário. Dos vários aspectos que requerem robustez, tal como a própria conexão de Internet, o escopo desse trabalho foi definido como os softwares livres que permitem a empresas aumentarem a disponibilidade de seus serviços. Dentre os resultados alcançados e para as condições simuladas, mostrou-se que o reconhecedor de voz em nuvem desenvolvido pelo grupo atingiu um desempenho próximo ao do Google.
Resumo:
In many movies of scientific fiction, machines were capable of speaking with humans. However mankind is still far away of getting those types of machines, like the famous character C3PO of Star Wars. During the last six decades the automatic speech recognition systems have been the target of many studies. Throughout these years many technics were developed to be used in applications of both software and hardware. There are many types of automatic speech recognition system, among which the one used in this work were the isolated word and independent of the speaker system, using Hidden Markov Models as the recognition system. The goals of this work is to project and synthesize the first two steps of the speech recognition system, the steps are: the speech signal acquisition and the pre-processing of the signal. Both steps were developed in a reprogrammable component named FPGA, using the VHDL hardware description language, owing to the high performance of this component and the flexibility of the language. In this work it is presented all the theory of digital signal processing, as Fast Fourier Transforms and digital filters and also all the theory of speech recognition using Hidden Markov Models and LPC processor. It is also presented all the results obtained for each one of the blocks synthesized e verified in hardware
Resumo:
Crowdsourcing linguistic phenomena with smartphone applications is relatively new. Apps have been used to train acoustic models for automatic speech recognition (de Vries et al. 2014) and to archive endangered languages (Iwaidja Inyaman Team 2012). Leemann and Kolly (2013) developed a free app for iOS—Dialäkt Äpp (DÄ) (>78k downloads)—to document language change in Swiss German. Here, we present results of sound change based on DÄ data. DÄ predicts the users’ dialects: for 16 variables, users select their dialectal variant. DÄ then tells users which dialect they speak. Underlying this prediction are maps from the Linguistic Atlas of German-speaking Switzerland (SDS, 1962-2003), which documents the linguistic situation around 1950. If predicted wrongly, users indicate their actual dialect. With this information, the 16 variables can be assessed for language change. Results revealed robustness of phonetic variables; lexical and morphological variables were more prone to change. Phonetic variables like to lift (variants: /lupfə, lʏpfə, lipfə/) revealed SDS agreement scores of nearly 85%, i.e., little sound change. Not all phonetic variables are equally robust: ladle (variants: /xælə, xællə, xæuə, xæɫə, xæɫɫə/) exhibited significant sound change. We will illustrate the results using maps that show details of the sound changes at hand.
Resumo:
Este trabajo de Tesis ha abordado el objetivo de dar robustez y mejorar la Detección de Actividad de Voz en entornos acústicos adversos con el fin de favorecer el comportamiento de muchas aplicaciones vocales, por ejemplo aplicaciones de telefonía basadas en reconocimiento automático de voz, aplicaciones en sistemas de transcripción automática, aplicaciones en sistemas multicanal, etc. En especial, aunque se han tenido en cuenta todos los tipos de ruido, se muestra especial interés en el estudio de las voces de fondo, principal fuente de error de la mayoría de los Detectores de Actividad en la actualidad. Las tareas llevadas a cabo poseen como punto de partida un Detector de Actividad basado en Modelos Ocultos de Markov, cuyo vector de características contiene dos componentes: la energía normalizada y la variación de la energía. Las aportaciones fundamentales de esta Tesis son las siguientes: 1) ampliación del vector de características de partida dotándole así de información espectral, 2) ajuste de los Modelos Ocultos de Markov al entorno y estudio de diferentes topologías y, finalmente, 3) estudio e inclusión de nuevas características, distintas de las del punto 1, para filtrar los pulsos de pronunciaciones que proceden de las voces de fondo. Los resultados de detección, teniendo en cuenta los tres puntos anteriores, muestran con creces los avances realizados y son significativamente mejores que los resultados obtenidos, bajo las mismas condiciones, con otros detectores de actividad de referencia. This work has been focused on improving the robustness at Voice Activity Detection in adverse acoustic environments in order to enhance the behavior of many vocal applications, for example telephony applications based on automatic speech recognition, automatic transcription applications, multichannel systems applications, and so on. In particular, though all types of noise have taken into account, this research has special interest in the study of pronunciations coming from far-field speakers, the main error source of most activity detectors today. The tasks carried out have, as starting point, a Hidden Markov Models Voice Activity Detector which a feature vector containing two components: normalized energy and delta energy. The key points of this Thesis are the following: 1) feature vector extension providing spectral information, 2) Hidden Markov Models adjustment to environment and study of different Hidden Markov Model topologies and, finally, 3) study and inclusion of new features, different from point 1, to reject the pronunciations coming from far-field speakers. Detection results, taking into account the above three points, show the advantages of using this method and are significantly better than the results obtained under the same conditions by other well-known voice activity detectors.
Resumo:
As the telecommunications industry evolves over the next decade to provide the products and services that people will desire, several key technologies will become commonplace. Two of these, automatic speech recognition and text-to-speech synthesis, will provide users with more freedom on when, where, and how they access information. While these technologies are currently in their infancy, their capabilities are rapidly increasing and their deployment in today's telephone network is expanding. The economic impact of just one application, the automation of operator services, is well over $100 million per year. Yet there still are many technical challenges that must be resolved before these technologies can be deployed ubiquitously in products and services throughout the worldwide telephone network. These challenges include: (i) High level of accuracy. The technology must be perceived by the user as highly accurate, robust, and reliable. (ii) Easy to use. Speech is only one of several possible input/output modalities for conveying information between a human and a machine, much like a computer terminal or Touch-Tone pad on a telephone. It is not the final product. Therefore, speech technologies must be hidden from the user. That is, the burden of using the technology must be on the technology itself. (iii) Quick prototyping and development of new products and services. The technology must support the creation of new products and services based on speech in an efficient and timely fashion. In this paper I present a vision of the voice-processing industry with a focus on the areas with the broadest base of user penetration: speech recognition, text-to-speech synthesis, natural language processing, and speaker recognition technologies. The current and future applications of these technologies in the telecommunications industry will be examined in terms of their strengths, limitations, and the degree to which user needs have been or have yet to be met. Although noteworthy gains have been made in areas with potentially small user bases and in the more mature speech-coding technologies, these subjects are outside the scope of this paper.
Resumo:
This work focuses on Machine Translation (MT) and Speech-to-Speech Translation, two emerging technologies that allow users to automatically translate written and spoken texts. The first part of this work provides a theoretical framework for the evaluation of Google Translate and Microsoft Translator, which is at the core of this study. Chapter one focuses on Machine Translation, providing a definition of this technology and glimpses of its history. In this chapter we will also learn how MT works, who uses it, for what purpose, what its pros and cons are, and how machine translation quality can be defined and assessed. Chapter two deals with Speech-to-Speech Translation by focusing on its history, characteristics and operation, potential uses and limits deriving from the intrinsic difficulty of translating spoken language. After describing the future prospects for SST, the final part of this chapter focuses on the quality assessment of Speech-to-Speech Translation applications. The last part of this dissertation describes the evaluation test carried out on Google Translate and Microsoft Translator, two mobile translation apps also providing a Speech-to-Speech Translation service. Chapter three illustrates the objectives, the research questions, the participants, the methodology and the elaboration of the questionnaires used to collect data. The collected data and the results of the evaluation of the automatic speech recognition subsystem and the language translation subsystem are presented in chapter four and finally analysed and compared in chapter five, which provides a general description of the performance of the evaluated apps and possible explanations for each set of results. In the final part of this work suggestions are made for future research and reflections on the usability and usefulness of the evaluated translation apps are provided.
Resumo:
Negli ultimi anni, l'avanzamento incredibilmente rapido della tecnologia ha portato allo sviluppo e alla diffusione di dispositivi elettronici portatili aventi dimensioni estremamente ridotte e, allo stesso tempo, capacità computazionali molto notevoli. Più nello specifico, una particolare categoria di dispositivi, attualmente in forte sviluppo, che ha già fatto la propria comparsa sul mercato mondiale è sicuramente la categoria dei dispositivi Wearable. Come suggerisce il nome, questi sono progettati per essere letteralmente indossati, pensati per fornire continuo supporto, in diversi ambiti, a chi li utilizza. Se per interagire con essi l’utente non deve ricorrere obbligatoriamente all'utilizzo delle mani, allora si parla di dispositivi Wearable Hands Free. Questi sono generalmente in grado di percepire e catture l’input dell'utente seguendo tecniche e metodologie diverse, non basate sul tatto. Una di queste è sicuramente quella che prevede di modellare l’input dell’utente stesso attraverso la sua voce, appoggiandosi alla disciplina dell’ASR (Automatic Speech Recognition), che si occupa della traduzione del linguaggio parlato in testo, mediante l’utilizzo di dispositivi computerizzati. Si giunge quindi all’obiettivo della tesi, che è quello di sviluppare un framework, utilizzabile nell’ambito dei dispositivi Wearable, che fornisca un servizio di riconoscimento vocale appoggiandosi ad uno già esistente, in modo che presenti un certo livello di efficienza e facilità di utilizzo. Più in generale, in questo documento si punta a fornire una descrizione approfondita di quelli che sono i dispositivi Wearable e Wearable Hands-Free, definendone caratteristiche, criticità e ambiti di utilizzo. Inoltre, l’intento è quello di illustrare i principi di funzionamento dell’Automatic Speech Recognition per passare poi ad analisi, progettazione e sviluppo del framework appena citato.
Resumo:
This presentation summarizes experience with the automated speech recognition and translation approach realised in the context of the European project EMMA.
Resumo:
Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies the auditory, visual and combined audio-visual recognition of vowels by severely and profoundly hearing impaired children.
Resumo:
BACKGROUND Co-speech gestures are part of nonverbal communication during conversations. They either support the verbal message or provide the interlocutor with additional information. Furthermore, they prompt as nonverbal cues the cooperative process of turn taking. In the present study, we investigated the influence of co-speech gestures on the perception of dyadic dialogue in aphasic patients. In particular, we analysed the impact of co-speech gestures on gaze direction (towards speaker or listener) and fixation of body parts. We hypothesized that aphasic patients, who are restricted in verbal comprehension, adapt their visual exploration strategies. METHODS Sixteen aphasic patients and 23 healthy control subjects participated in the study. Visual exploration behaviour was measured by means of a contact-free infrared eye-tracker while subjects were watching videos depicting spontaneous dialogues between two individuals. Cumulative fixation duration and mean fixation duration were calculated for the factors co-speech gesture (present and absent), gaze direction (to the speaker or to the listener), and region of interest (ROI), including hands, face, and body. RESULTS Both aphasic patients and healthy controls mainly fixated the speaker's face. We found a significant co-speech gesture × ROI interaction, indicating that the presence of a co-speech gesture encouraged subjects to look at the speaker. Further, there was a significant gaze direction × ROI × group interaction revealing that aphasic patients showed reduced cumulative fixation duration on the speaker's face compared to healthy controls. CONCLUSION Co-speech gestures guide the observer's attention towards the speaker, the source of semantic input. It is discussed whether an underlying semantic processing deficit or a deficit to integrate audio-visual information may cause aphasic patients to explore less the speaker's face.
Resumo:
Background: Co-speech gestures are part of nonverbal communication during conversations. They either support the verbal message or provide the interlocutor with additional information. Furthermore, they prompt as nonverbal cues the cooperative process of turn taking. In the present study, we investigated the influence of co-speech gestures on the perception of dyadic dialogue in aphasic patients. In particular, we analysed the impact of co-speech gestures on gaze direction (towards speaker or listener) and fixation of body parts. We hypothesized that aphasic patients, who are restricted in verbal comprehension, adapt their visual exploration strategies. Methods: Sixteen aphasic patients and 23 healthy control subjects participated in the study. Visual exploration behaviour was measured by means of a contact-free infrared eye-tracker while subjects were watching videos depicting spontaneous dialogues between two individuals. Cumulative fixation duration and mean fixation duration were calculated for the factors co-speech gesture (present and absent), gaze direction (to the speaker or to the listener), and region of interest (ROI), including hands, face, and body. Results: Both aphasic patients and healthy controls mainly fixated the speaker’s face. We found a significant co-speech gesture x ROI interaction, indicating that the presence of a co-speech gesture encouraged subjects to look at the speaker. Further, there was a significant gaze direction x ROI x group interaction revealing that aphasic patients showed reduced cumulative fixation duration on the speaker’s face compared to healthy controls. Conclusion: Co-speech gestures guide the observer’s attention towards the speaker, the source of semantic input. It is discussed whether an underlying semantic processing deficit or a deficit to integrate audio-visual information may cause aphasic patients to explore less the speaker’s face. Keywords: Gestures, visual exploration, dialogue, aphasia, apraxia, eye movements
Resumo:
Scientific background: Marine mammals use sound for communication, navigation and prey detection. Acoustic sensors therefore allow the detection of marine mammals, even during polar winter months, when restricted visibility prohibits visual sightings. The animals are surrounded by a permanent natural soundscape, which, in polar waters, is mainly dominated by the movement of ice. In addition to the detection of marine mammals, acoustic long-term recordings provide information on intensity and temporal variability of characteristic natural and anthropogenic background sounds, as well as their influence on the vocalization of marine mammals Scientific objectives: The PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Hawaiian "whale") near Neumayer Station is intended to record the underwater soundscape in the vicinity of the shelf ice edge over the duration of several years. These long-term recordings will allow studying the acoustic repertoire of whales and seals continuously in an environment almost undisturbed by humans. The data will be analyzed to (1) register species specific vocalizations, (2) infer the approximate number of animals inside the measuring range, (3) calculate their movements relative to the observatory, and (4) examine possible effects of the sporadic shipping traffic on the acoustic and locomotive behaviour of marine mammals. The data, which are largely free of anthropogenic noise, provide also a base to set up passive acoustic mitigation systems used on research vessels. Noise-free bioacoustic data thereby represent the foundation for the development of automatic pattern recognition procedures in the presence of interfering sounds, e.g. propeller noise.
Resumo:
Although there has been a lot of interest in recognizing and understanding air traffic control (ATC) speech, none of the published works have obtained detailed field data results. We have developed a system able to identify the language spoken and recognize and understand sentences in both Spanish and English. We also present field results for several in-tower controller positions. To the best of our knowledge, this is the first time that field ATC speech (not simulated) is captured, processed, and analyzed. The use of stochastic grammars allows variations in the standard phraseology that appear in field data. The robust understanding algorithm developed has 95% concept accuracy from ATC text input. It also allows changes in the presentation order of the concepts and the correction of errors created by the speech recognition engine improving it by 17% and 25%, respectively, absolute in the percentage of fully correctly understood sentences for English and Spanish in relation to the percentages of fully correctly recognized sentences. The analysis of errors due to the spontaneity of the speech and its comparison to read speech is also carried out. A 96% word accuracy for read speech is reduced to 86% word accuracy for field ATC data for Spanish for the "clearances" task confirming that field data is needed to estimate the performance of a system. A literature review and a critical discussion on the possibilities of speech recognition and understanding technology applied to ATC speech are also given.