805 resultados para audio data classification
Resumo:
The paper describes an algorithm for multi-label classification. Since a pattern can belong to more than one class, the task of classifying a test pattern is a challenging one. We propose a new algorithm to carry out multi-label classification which works for discrete data. We have implemented the algorithm and presented the results for different multi-label data sets. The results have been compared with the algorithm multi-label KNN or ML-KNN and found to give good results.
Resumo:
The problem of classification of time series data is an interesting problem in the field of data mining. Even though several algorithms have been proposed for the problem of time series classification we have developed an innovative algorithm which is computationally fast and accurate in several cases when compared with 1NN classifier. In our method we are calculating the fuzzy membership of each test pattern to be classified to each class. We have experimented with 6 benchmark datasets and compared our method with 1NN classifier.
Resumo:
In this paper, we consider applying derived knowledge base regarding the sensitivity and specificity of damage(s) to be detected by an SHM system being designed and qualified. These efforts are necessary toward developing capabilities in SHM system to classify reliably various probable damages through sequence of monitoring, i.e., damage precursor identification, detection of damage and monitoring its progression. We consider the particular problem of visual and ultrasonic NDE based SHM system design requirements, where the damage detection sensitivity and specificity data definitions for a class of structural components are established. Methodologies for SHM system specification creation are discussed in details. Examples are shown to illustrate how the physics of damage detection scheme limits particular damage detection sensitivity and specificity and further how these information can be used in algorithms to combine various different NDE schemes in an SHM system to enhance efficiency and effectiveness. Statistical and data driven models to determine the sensitivity and probability of damage detection (POD) has been demonstrated for plate with varying one-sided line crack using optical and ultrasonic based inspection techniques.
Resumo:
169 p. : il. col.
Resumo:
The Olympic Coast National Marine Sanctuary (OCNMS) continues to invest significant resources into seafloor mapping activities along Washington’s outer coast (Intelmann and Cochrane 2006; Intelmann et al. 2006; Intelmann 2006). Results from these annual mapping efforts offer a snapshot of current ground conditions, help to guide research and management activities, and provide a baseline for assessing the impacts of various threats to important habitat. During the months of August 2004 and May and July 2005, we used side scan sonar to image several regions of the sea floor in the northern OCNMS, and the data were mosaicked at 1-meter pixel resolution. Video from a towed camera sled, bathymetry data, sedimentary samples and side scan sonar mapping were integrated to describe geological and biological aspects of habitat. Polygon features were created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). For three small areas that were mapped with both side scan sonar and multibeam echosounder, we made a comparison of output from the classified images indicating little difference in results between the two methods. With these considerations, backscatter derived from multibeam bathymetry is currently a costefficient and safe method for seabed imaging in the shallow (<30 meters) rocky waters of OCNMS. The image quality is sufficient for classification purposes, the associated depths provide further descriptive value and risks to gear are minimized. In shallow waters (<30 meters) which do not have a high incidence of dangerous rock pinnacles, a towed multi-beam side scan sonar could provide a better option for obtaining seafloor imagery due to the high rate of acquisition speed and high image quality, however the high probability of losing or damaging such a costly system when deployed as a towed configuration in the extremely rugose nearshore zones within OCNMS is a financially risky proposition. The development of newer technologies such as intereferometric multibeam systems and bathymetric side scan systems could also provide great potential for mapping these nearshore rocky areas as they allow for high speed data acquisition, produce precisely geo-referenced side scan imagery to bathymetry, and do not experience the angular depth dependency associated with multibeam echosounders allowing larger range scales to be used in shallower water. As such, further investigation of these systems is needed to assess their efficiency and utility in these environments compared to traditional side scan sonar and multibeam bathymetry. (PDF contains 43 pages.)
Resumo:
In September 2002, side scan sonar was used to image a portion of the sea floor in the northern OCNMS and was mosaiced at 1-meter pixel resolution using 100 kHz data collected at 300-meter range scale. Video from a remotely-operated vehicle (ROV), bathymetry data, sedimentary samples, and sonar mapping have been integrated to describe geological and biological aspects of habitat and polygon features have been created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). The data can be used with geographic information system (GIS) software for display, query, and analysis. Textural analysis of the sonar images provided a relatively automated method for delineating substrate into three broad classes representing soft, mixed sediment, and hard bottom. Microhabitat and presence of certain biologic attributes were also populated into the polygon features, but strictly limited to areas where video groundtruthing occurred. Further groundtruthing work in specific areas would improve confidence in the classified habitat map. (PDF contains 22 pages.)
Resumo:
162 p.
Resumo:
In the problem of one-class classification (OCC) one of the classes, the target class, has to be distinguished from all other possible objects, considered as nontargets. In many biomedical problems this situation arises, for example, in diagnosis, image based tumor recognition or analysis of electrocardiogram data. In this paper an approach to OCC based on a typicality test is experimentally compared with reference state-of-the-art OCC techniques-Gaussian, mixture of Gaussians, naive Parzen, Parzen, and support vector data description-using biomedical data sets. We evaluate the ability of the procedures using twelve experimental data sets with not necessarily continuous data. As there are few benchmark data sets for one-class classification, all data sets considered in the evaluation have multiple classes. Each class in turn is considered as the target class and the units in the other classes are considered as new units to be classified. The results of the comparison show the good performance of the typicality approach, which is available for high dimensional data; it is worth mentioning that it can be used for any kind of data (continuous, discrete, or nominal), whereas state-of-the-art approaches application is not straightforward when nominal variables are present.
Resumo:
This paper investigates several approaches to bootstrapping a new spoken language understanding (SLU) component in a target language given a large dataset of semantically-annotated utterances in some other source language. The aim is to reduce the cost associated with porting a spoken dialogue system from one language to another by minimising the amount of data required in the target language. Since word-level semantic annotations are costly, Semantic Tuple Classifiers (STCs) are used in conjunction with statistical machine translation models both of which are trained from unaligned data to further reduce development time. The paper presents experiments in which a French SLU component in the tourist information domain is bootstrapped from English data. Results show that training STCs on automatically translated data produced the best performance for predicting the utterance's dialogue act type, however individual slot/value pairs are best predicted by training STCs on the source language and using them to decode translated utterances. © 2010 ISCA.