785 resultados para applicazione, business analysis, data mining, Facebook, PRIN, relazioni sociali, social network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two concepts in rural economic development policy have been the focus of much research and policy action: the identification and support of clusters or networks of firms and the availability and adoption by rural businesses of Information and Communication Technologies (ICT). From a theoretical viewpoint these policies are based on two contrasting models, with clustering seen as a process of economic agglomeration, and ICT-mediated communication as a means of facilitating economic dispersion. The study’s conceptual framework is based on four interrelated elements: location, interaction, knowledge, and advantage, together with the concept of networks which is employed as an operationally and theoretically unifying concept. The research questions are developed in four successive categories: Policy, Theory, Networks, and Method. The questions are approached using a study of two contrasting groups of rural small businesses in West Cork, Ireland: (a) Speciality Foods, and (b) firms in Digital Products and Services. The study combines Social Network Analysis (SNA) with Qualitative Thematic Analysis, using data collected from semi-structured interviews with 58 owners or managers of these businesses. Data comprise relational network data on the firms’ connections to suppliers, customers, allies and competitors, together with linked qualitative data on how the firms established connections, and how tacit and codified knowledge was sourced and utilised. The research finds that the key characteristics identified in the cluster literature are evident in the sample of Speciality Food businesses, in relation to flows of tacit knowledge, social embedding, and the development of forms of social capital. In particular the research identified the presence of two distinct forms of collective social capital in this network, termed “community” and “reputation”. By contrast the sample of Digital Products and Services businesses does not have the form of a cluster, but matches more closely to dispersive models, or “chain” structures. Much of the economic and social structure of this set of firms is best explained in terms of “project organisation”, and by the operation of an individual rather than collective form of “reputation”. The rural setting in which these firms are located has resulted in their being service-centric, and consequently they rely on ICT-mediated communication in order to exchange tacit knowledge “at a distance”. It is this factor, rather than inputs of codified knowledge, that most strongly influences their operation and their need for availability and adoption of high quality communication technologies. Thus the findings have applicability in relation to theory in Economic Geography and to policy and practice in Rural Development. In addition the research contributes to methodological questions in SNA, and to methodological questions about the combination or mixing of quantitative and qualitative methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining, as a heatedly discussed term, has been studied in various fields. Its possibilities in refining the decision-making process, realizing potential patterns and creating valuable knowledge have won attention of scholars and practitioners. However, there are less studies intending to combine data mining and libraries where data generation occurs all the time. Therefore, this thesis plans to fill such a gap. Meanwhile, potential opportunities created by data mining are explored to enhance one of the most important elements of libraries: reference service. In order to thoroughly demonstrate the feasibility and applicability of data mining, literature is reviewed to establish a critical understanding of data mining in libraries and attain the current status of library reference service. The result of the literature review indicates that free online data resources other than data generated on social media are rarely considered to be applied in current library data mining mandates. Therefore, the result of the literature review motivates the presented study to utilize online free resources. Furthermore, the natural match between data mining and libraries is established. The natural match is explained by emphasizing the data richness reality and considering data mining as one kind of knowledge, an easy choice for libraries, and a wise method to overcome reference service challenges. The natural match, especially the aspect that data mining could be helpful for library reference service, lays the main theoretical foundation for the empirical work in this study. Turku Main Library was selected as the case to answer the research question: whether data mining is feasible and applicable for reference service improvement. In this case, the daily visit from 2009 to 2015 in Turku Main Library is considered as the resource for data mining. In addition, corresponding weather conditions are collected from Weather Underground, which is totally free online. Before officially being analyzed, the collected dataset is cleansed and preprocessed in order to ensure the quality of data mining. Multiple regression analysis is employed to mine the final dataset. Hourly visits are the independent variable and weather conditions, Discomfort Index and seven days in a week are dependent variables. In the end, four models in different seasons are established to predict visiting situations in each season. Patterns are realized in different seasons and implications are created based on the discovered patterns. In addition, library-climate points are generated by a clustering method, which simplifies the process for librarians using weather data to forecast library visiting situation. Then the data mining result is interpreted from the perspective of improving reference service. After this data mining work, the result of the case study is presented to librarians so as to collect professional opinions regarding the possibility of employing data mining to improve reference services. In the end, positive opinions are collected, which implies that it is feasible to utilizing data mining as a tool to enhance library reference service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incredible rapid development to huge volumes of air travel, mainly because of jet airliners that appeared to the sky in the 1950s, created the need for systematic research for aviation safety and collecting data about air traffic. The structured data can be analysed easily using queries from databases and running theseresults through graphic tools. However, in analysing narratives that often give more accurate information about the case, mining tools are needed. The analysis of textual data with computers has not been possible until data mining tools have been developed. Their use, at least among aviation, is still at a moderate level. The research aims at discovering lethal trends in the flight safety reports. The narratives of 1,200 flight safety reports from years 1994 – 1996 in Finnish were processed with three text mining tools. One of them was totally language independent, the other had a specific configuration for Finnish and the third originally created for English, but encouraging results had been achieved with Spanish and that is why a Finnish test was undertaken, too. The global rate of accidents is stabilising and the situation can now be regarded as satisfactory, but because of the growth in air traffic, the absolute number of fatal accidents per year might increase, if the flight safety will not be improved. The collection of data and reporting systems have reached their top level. The focal point in increasing the flight safety is analysis. The air traffic has generally been forecasted to grow 5 – 6 per cent annually over the next two decades. During this period, the global air travel will probably double also with relatively conservative expectations of economic growth. This development makes the airline management confront growing pressure due to increasing competition, signify cant rise in fuel prices and the need to reduce the incident rate due to expected growth in air traffic volumes. All this emphasises the urgent need for new tools and methods. All systems provided encouraging results, as well as proved challenges still to be won. Flight safety can be improved through the development and utilisation of sophisticated analysis tools and methods, like data mining, using its results supporting the decision process of the executives.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to accurately predict the lifetime of building components is crucial to optimizing building design, material selection and scheduling of required maintenance. This paper discusses a number of possible data mining methods that can be applied to do the lifetime prediction of metallic components and how different sources of service life information could be integrated to form the basis of the lifetime prediction model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source. In the initial software, no attempt was made to choose between the results offered or construct a case for retention in the casebase. In this phase of the project, alternative data mining techniques will be explored and evaluated. A process for selecting a unique service life prediction for each query will also be investigated. This report summarises the initial evaluation of several data mining techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the problem of using the data mining models in a real-world situation where the user can not provide all the inputs with which the predictive model is built. A learning system framework, Query Based Learning System (QBLS), is developed for improving the performance of the predictive models in practice where not all inputs are available for querying to the system. The automatic feature selection algorithm called Query Based Feature Selection (QBFS) is developed for selecting features to obtain a balance between the relative minimum subset of features and the relative maximum classification accuracy. Performance of the QBLS system and the QBFS algorithm is successfully demonstrated with a real-world application