998 resultados para antiproliferative activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Com o objetivo de avaliar o efeito de duas espécies amazônicas em doenças relacionadas aos processos de oxidação, determinou-se a capacidade antioxidante (método Oxygen Radical Absorbance Capacity), o teor de polifenóis totais (método Folin-Ciocalteu - PT), bem como os efeitos farmacológicos in vitro (efeito antiproliferativo) e in vivo (antinociceptivo, antiinflamatório, antiulcerogênico) dos extratos hidroalcoólicos (65:35; v/v; etanol:água) das folhas de Byrsonima crassifolia (BC) e Inga edulis (IE). Os extratos de BC e IE apresentaram elevada capacidade antioxidante (1.422 e 694 µmol de Trolox Equivalente g-1 de folha seca - FS, respectivamente) e um valor relativamente alto de PT (35,93 e 24,50 mg Equivalente ácido gálico g-1 FS, respectivamente). Essa atividade antioxidante não teve relação direta com o teor de compostos fenólicos dos extratos, sugerindo a contribuição de outros grupos químicos nessa atividade. Em cultura de células tumorais humanas (nove linhagens), os extratos não apresentaram atividade antiproliferativa significante, com efeito citotóxico somente na concentração mais elevada. Em modelo de nocicepção induzida pelo calor (placa quente), o extrato de IE apresentou efeito antinociceptivo (P < 0,05) após 30 (250 e 500 mg kg-1) e 60 min (125 e 500 mg kg-1) de sua administração oral. Nos modelos de inflamação houve somente redução do edema para IE na concentração de 500 mg kg-1. Os extratos das duas espécies reduziram as lesões ulcerativas produzidas por etanol em até 84% (P < 0,05), sugerindo uma possível ligação com a atividade antioxidante observada e indicando a necessidade de estudos para a elucidação do mecanismo de ação envolvido.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A leishmaniose é uma doença de caráter antropozoonótico causada por parasitas do gênero Leishmania. Estes parasitas proliferam principalmente dentro de macrófagos de mamíferos e são responsáveis por promover uma diversidade de manifestações clínicas como Leishmaniose Cutânea (LC) e Leishmaniose Mucocutânea (LMC). O único tratamento utilizado para a leishmaniose é a quimioterapia, onde geralmente são utilizadas drogas tóxicas e com longo período de tratamento. O estudo de produtos naturais obtidos de plantas como agente leishmanicida desempenha um papel importante na busca de novas drogas para o tratamento da leishmaniose. A (+)-filantidina é um alcaloide extraído do caule da planta Margaritaria nobilis, pertencente a família Phyllanthaceae. Desta forma, objetivo deste estudo é avaliar os efeitos da (+)-filantidina sobre formas promastigotas de Leishmania (Leishmania) amazonensis e a célula hospedeira. A atividade antiproliferativa de formas promastigotas foi avaliada quando os parasitas foram tratados com 50, 100 e 200 μg/ml do alcaloide por 96 horas, com redução de 73,75%, 82,50% e 88,75% no número de parasitas respectivamente, quando comparados ao grupo controle sem tratamento. No período de 96 horas, foi observado um valor IC50 de 56,34 μg/ml. A anfotericina B foi utilizada como droga de referência na concentração de 0,1 μg/ml, sendo observada redução de 100% dos parasitas durante as 96 horas de tratamento. O tratamento com o alcaloide promoveu alterações importantes nas promastigotas, mostradas através de microscopia eletrônica de transmissão e varredura. Foram observadas alterações no corpo celular, flagelo, cinetoplasto, mitocôndria, indução na formação de rosetas, presença de vesículas eletrodensas sugestivas de corpúsculos lipídicos e aumento no número de estruturas semelhantes a acidocalcisssomos. Com relação à célula hospedeira, não foi observado efeito citotóxico nos macrófagos tratados com alcaloide e análise por microscopia eletrônica de varredura mostrou que o alcaloide promoveu aumento no número de projeções citoplasmáticas, aumento do volume celular e espraiamento. Assim, estes resultados demonstram que a (+)-filantidina foi eficaz na redução do crescimento de formas promastigotas do protozoário, sendo eficaz na ativação de macrófagos sem causar efeito citotóxico para o mesmo, o que pode representar uma fonte alternativa para o tratamento da leishmaniose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Sorafenib is a multikinase inhibitor with antiangiogenic/antiproliferative activity. A randomized, double-blind, placebo-controlled phase IIB trial assessed sorafenib with capecitabine for locally advanced or metastatic human epidermal growth factor receptor 2 (HER2) -negative breast cancer. Patients and Methods Patients were randomly assigned to first-or second-line capecitabine 1,000 mg/m(2) orally twice a day for days 1 to 14 of every 21-day cycle with sorafenib 400 mg orally twice a day or placebo. The primary end point was progression-free survival (PFS). Results In total, 229 patients were enrolled. The addition of sorafenib to capecitabine resulted in a significant improvement in PFS versus placebo (median, 6.4 v 4.1 months; hazard ratio [HR], 0.58; 95% CI, 0.41 to 0.81; P = .001) with sorafenib favored across subgroups, including first-line (HR, 0.50; 95% CI, 0.30 to 0.82) and second-line (HR, 0.65; 95% CI, 0.41 to 1.04) treatment. There was no significant improvement for overall survival (median, 22.2 v 20.9 months; HR, 0.86; 95% CI, 0.61 to 1.23; P = .42) and overall response (38% v 31%; P = .25). Toxicities (sorafenib v placebo) of any grade included rash (22% v 8%), diarrhea (58% v 30%), mucosal inflammation (33% v 21%), neutropenia (13% v 4%), hypertension (18% v 12%), and hand-foot skin reaction/hand-foot syndrome (HFSR/HFS; 90% v 66%); grade 3 to 4 toxicities were comparable between treatment arms except HFSR/HFS (44% v 14%). Reasons for discontinuation in the sorafenib and placebo arms included disease progression (63% v 82%, respectively), adverse events (20% v 9%, respectively), and death (0% v 1%, respectively). Conclusion Addition of sorafenib to capecitabine improved PFS in patients with HER2-negative advanced breast cancer. The dose of sorafenib used in this trial resulted in unacceptable toxicity for many patients. A phase III confirmatory trial has been initiated with a reduced sorafenib dose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2-Acetylpyridine-phenylhydrazone (H2AcPh), its para-chlorophenylhydrazone (H2AcpClPh) and para-nitrophenylhydrazone (H2AcpNO(2)Ph) analogues, the corresponding 2-benzoylpyridine-derived hydrazones (H2BzPh, H2BzpClPh and H2BzpNO(2)Ph) and their gallium(III) complexes were assayed for their cytotoxic activity against U87 (expressing wild-type p53 protein) and T98 (expressing mutant p53 protein) glioma cells. IC50 values against both glioma cells and against the MRC5 (human fetal lung fibroblast) lineage were obtained for the hydrazones, but not for their gallium(III) complexes, due to their low solubility. Hydrazones were highly cytotoxic at nanomolar doses against U87 and T98 cells. The therapeutic indexes (TI = IC50MRC5/IC50glioma) were 2-660 for T98 cells and 28-5000 for U87 cells, indicating that the studied hydrazones could be good antitumor drug candidates to treat brain tumors. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been proved that naphthalene diimide (NDI) derivatives display anticancer properties as intercalators and G-quadruplex-binding ligands, leading to DNA damage, senescence and down-regulation of oncogene expression. This thesis deals with the design and synthesis of disubstituted and tetrasubstituted NDI derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development. Disubstituted NDI compounds have been designed with the aim to provide potential multitarget directed ligands (MTDLs), in order to create molecules able to simultaneously interact with some of the different targets involved in this pathology. The most active compound, displayed antiproliferative activity in submicromolar range, especially against colon and prostate cancer cell lines, the ability to bind duplex and quadruplex DNA, to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Tetrasubstituted NDI compounds have been designed as G-quadruplex-binding ligands endowed with anticancer activity. In order to improve the cellular uptake of the lead compound, the N-methylpiperazine moiety have been replaced with different aromatic systems and methoxypropyl groups. The most interesting compound was 1d, which was able to interact with the G-quadruplexes both telomeric and in HSP90 promoter region, and it has been co-crystallized with the human telomeric G-quadruplex, to directly verify its ability to bind this kind of structure, and also to investigate its binding mode. All the morpholino substituted compounds show antiproliferative activity in submicromolar values mainly in pancreatic and lung cancer cell lines, and they show an improved biological profile in comparison with that of the lead compound. In conclusion, both these studies, may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the past years, genome biology had disclosed an ever-growing kind of biological targets that emerged as ideal points for therapeutic intervention. Nevertheless, the number of new chemical entities (NCEs) translated into effective therapies employed in the clinic, still not observed. Innovative strategies in drug discovery combined with different approaches to drug design should be searched for bridge this gap. In this context organic synthetic chemistry had to provide for effective strategies to achieve biologically active small molecules to consider not only as potentially drug candidates, but also as chemical tools to dissect biological systems. In this scenario, during my PhD, inspired by the Biology-oriented Synthesis approach, a small library of hybrid molecules endowed with privileged scaffolds, able to block cell cycle and to induce apoptosis and cell differentiation, merged with natural-like cores were synthesized. A synthetic platform which joined a Domino Knoevenagel-Diels Alder reaction with a Suzuki coupling was performed in order to reach the hybrid compounds. These molecules can represent either antitumor lead candidates, or valuable chemical tools to study molecular pathways in cancer cells. The biological profile expressed by some of these derivatives showed a well defined antiproliferative activity on leukemia Bcr-Abl expressing K562 cell lines. A parallel project regarded the rational design and synthesis of minimally structurally hERG blockers with the purpose of enhancing the SAR studies of a previously synthesized collection. A Target-Oriented Synthesis approach was applied. Combining conventional and microwave heating, the desired final compounds were achieved in good yields and reaction rates. The preliminary biological results of the compounds, showed a potent blocking activity. The obtained small set of hERG blockers, was able to gain more insight the minimal structural requirements for hERG liability, which is mandatory to investigate in order to reduce the risk of potential side effects of new drug candidates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epothilones are bacterial macrolides with potent microtubule-stabilizing and antiproliferative activity, which have served as successful lead structures for the discovery of several clinical candidates for cancer treatment. Overall, seven epothilone-type agents have been advanced to clinical evaluation in humans so far and one of these has been approved by the FDA in 2007 for clinical use in breast cancer patients. Notwithstanding these impressive numbers, however, the structural diversity represented by the collection of epothilone analogs that have been (or still are) investigated clinically is rather limited and their individual structures show little divergence from the original natural product leads. In contrast, we have elaborated a series of epothilone-derived macro-lactones, whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of conformationally constrained side chains, the removal of the C(3)-hydroxyl group, and the replacement of C(12) with nitrogen. The latter modification leads to aza-macrolides that may be described as 'non-natural natural products'.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The quassinoid analogue NBT-272 has been reported to inhibit MYC, thus warranting a further effort 7to better understand its preclinical properties in models of embryonal tumors (ET), a family of childhood malignancies sharing relevant biological and genetic features such as deregulated expression of MYC oncogenes. In our study, NBT-272 displayed a strong antiproliferative activity in vitro that resulted from the combination of diverse biological effects, ranging from G(1)/S arrest of the cell cycle to apoptosis and autophagy. The compound prevented the full activation of both eukaryotic translation initiation factor 4E (eIF4E) and its binding protein 4EBP-1, regulating cap-dependent protein translation. Interestingly, all responses induced by NBT-272 in ET could be attributed to interference with 2 main proproliferative signaling pathways, that is, the AKT and the MEK/extracellular signal-regulated kinase pathways. These findings also suggested that the depleting effect of NBT-272 on MYC protein expression occurred via indirect mechanisms, rather than selective inhibition. Finally, the ability of NBT-272 to arrest tumor growth in a xenograft model of neuroblastoma plays a role in the strong antitumor activity of this compound, both in vitro and in vivo, with its potential to target cell-survival pathways that are relevant for the development and progression of ET.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two new cyclohexenones (antheminones A and B) and a new cyclohexanone, (antheminone C) along with five known compounds were isolated from the leaves of Anthemis maritima L. The structures were mainly deduced from extensive 1D and 2D NMR spectroscopy and mass spectrometry. The new compounds were tested in vitro for their cytotoxic activity against adherent and non-adherent cancer cell lines. Antheminones A and C exhibited significant antiproliferative activity against leukemia cells with IC(50) values ranging from 3.2 to 14 microM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epothilones are macrocyclic bacterial natural products with potent microtubule-stabilizing and antiproliferative activity. They have served as successful lead structures for the development of several clinical candidates for anticancer therapy. However, the structural diversity of this group of clinical compounds is rather limited, as their structures show little divergence from the original natural product leads. Our own research has explored the question of whether epothilones can serve as a basis for the development of new structural scaffolds, or chemotypes, for microtubule stabilization that might serve as a basis for the discovery of new generations of anticancer drugs. We have elaborated a series of epothilone-derived macrolactones whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of a conformationally constrained side chain, the removal of the C3-hydroxyl group, and the replacement of C12 with nitrogen. So far, this approach has yielded analogs 30 and 40 that are the most advanced, the most rigorously modified, structures, both of which are potent antiproliferative agents with low nanomolar activity against several human cancer cell lines in vitro. The synthesis was achieved through a macrolactone-based strategy or a high-yielding RCM reaction. The 12-aza-epothilone ("azathilone" 40) may be considered a "non-natural" natural product that still retains most of the overall structural characteristics of a true natural product but is structurally unique, because it lies outside of the general scope of Nature's biosynthetic machinery for polyketide synthesis. Like natural epothilones, both 30 and 40 promote tubulin polymerization in vitro and at the cellular level induce cell cycle arrest in mitosis. These facts indicate that cancer cell growth inhibition by these compounds is based on the same mechanistic underpinnings as those for natural epothilones. Interestingly, the 9,10-dehydro analog of 40 is significantly less active than the saturated parent compound, which is contrary to observations for natural epothilones B or D. This may point to differences in the bioactive conformations of N-acyl-12-aza-epothilones like 40 and natural epothilones. In light of their distinct structural features, combined with an epothilone-like (and taxol-like) in vitro biological profile, 30 and 40 can be considered as representative examples of new chemotypes for microtubule stabilization. As such, they may offer the same potential for pharmacological differentiation from the original epothilone leads as various newly discovered microtubule-stabilizing natural products with macrolactone structures, such as laulimalide, peloruside, or dictyostatin.