994 resultados para anoxic conditions
Resumo:
The late Volgian (early "Boreal" Berriasian) sapropels of the Hekkingen Formation of the central Barents Sea show total organic carbon (TOC) contents from 3 to 36 wt%. The relationship between TOC content and sedimentation rate (SR), and the high Mo/Al ratios indicate deposition under oxygen-free bottom-water conditions, and suggest that preservation under anoxic conditions has largely contributed to the high accumulation of organic carbon. Hydrogen index values obtained from Rock-Eval pyrolysis are exceptionally high, and the organic matter is characterized by well-preserved type II kerogen. However, the occurrence of spores, freshwater algae, coal fragments, and charred land-plant remains strongly suggests proximity to land. Short-term oscillations, probably reflecting Milankovitch-type cyclicity, are superimposed on the long-term trend of constantly changing depositional conditions during most of the late Volgian. Progressively smaller amounts of terrestrial organic matter and larger amounts of marine organic matter upwards in the core section may have been caused by a continuous sea-level rise.
Resumo:
Sapropels -organic-matter rich layers- are common in Neogene sediments of the eastern Mediterranean Sea. The formation of these layers has been attributed to climate-related increases in organic-matter production (Calvert et al., 1992, doi:10.1038/359223a0; Rossignol-Strick et al., 1982, doi:10.1038/295105a0; Rohling, 1994, doi:10.1016/0025-3227(94)90202-X) and increased organic-matter preservation due to oxygen depletion in more stagnant bottom waters (Rossignol-Strick et al., 1982, doi:10.1038/295105a0; Rohling, 1994, doi:10.1016/0025-3227(94)90202-X). Here we report that eastern Mediterranean Pliocene sapropels (Emeis et al., 1996, doi:10.2973/odp.proc.ir.160.102.1996) contain molecular fossils of a compound (isorenieratene) known to be synthesized by photosynthetic green sulphur bacteria, suggesting that sulphidic (euxinic) -and therefore anoxic- conditions prevailed in the photic zone of the water column. These sapropels also have a high trace-metal content, which is probably due to the efficient scavenging of these metals by precipitating sulphides in a euxinic water column. The abundance and sulphur-isotope composition of pyrite are consistent with iron sulphide formation in the water column. We conclude that basin-wide water-column euxinia occurred over substantial periods during Pliocene sapropel formation in the eastern Mediterranean Sea, and that the ultimate degradation of the increased organic-matter production was strongly influential in generating and sustaining the euxinic conditions.
Resumo:
In the geosphere, germanium (Ge) has a chemical behavior close to that of silicon (Si), and Ge commonly substitutes for Si (in small proportions) in silicates. Studying the evolution of the respective proportions of Ge and Si through time allows us to better constrain the global Si cycle. The marine inventory of Ge present as dissolved germanic acid is facing two main sinks known through the study of present sediments: 1) incorporation into diatom frustules and transfer to sediments by these "shuttles", 2) capture of Ge released to pore water through frustule dissolution by authigenic mineral phases forming within reducing sediments. Our goals are to determine whether such a bio-induced transfer of Ge is also achieved by radiolarian and whether Ge could be trapped directly from seawater into authigenic phases with no intervention of opal-secreting organisms (shuttles). To this end, we studied two Paleozoic radiolarite formations and geological formations dated of Devonian, Jurassic and Cretaceous, deposited under more or less drastic redox conditions. Our results show that the Ge/Si values observed for these radiolarites are close to (slightly above) those measured from modern diatoms and sponges. In addition, our results confirm what is observed with some present-day reducing sediments: the ancient sediments that underwent reducing depositional conditions are authigenically enriched in Ge. Furthermore, it is probable that at least a part of the authigenic Ge came directly from seawater. The recurrence and extent (through time and space) of anoxic conditions affecting sea bottoms have been quite important through the geological times; consequently, the capture of Ge by reducing sediments must have impacted Ge distribution and in turn, the evolution of the seawater Ge/Si ratio.
Resumo:
Les lacs de thermokarst (lacs peu profonds créés par le dégel et l’érosion du pergélisol riche en glace) sont un type unique d’écosystèmes aquatiques reconnus comme étant de grands émetteurs de gaz à effet de serre vers l’atmosphère. Ils sont abondants dans le Québec subarctique et ils jouent un rôle important à l’échelle de la planète. Dans certaines régions, les lacs de thermokarst se transforment rapidement et deviennent plus grands et plus profonds. L’objectif de cette étude était d’améliorer la compréhension et d’évaluer quelles variables sont déterminantes pour la dynamique de l’oxygène dans ces lacs. C’est pourquoi j’ai examiné les possibles changements futurs de la dynamique de l’oxygène dans ces lacs dans un contexte de réchauffement climatique. Une grande variété de méthodes ont été utilisées afin de réaliser cette recherche, dont des analyses in situ et en laboratoire, ainsi que la modélisation. Des capteurs automatisés déployés dans cinq lacs ont mesuré l’oxygène, la conductivité et la température de la colonne d’eau en continu de l’été 2012 jusqu’à l’été 2015, à des intervalles compris entre 10 à 60 minutes. Des analyses en laboratoire ont permis de déterminer la respiration et les taux de production bactériens, les variables géochimiques limnologiques, ainsi que la distribution de la production bactérienne entre les différentes fractions de taille des communautés. La température de l’eau et les concentrations d’oxygène dissous d’un lac de thermokarst ont été modélisées avec des données du passé récent (1971) au climat futur (2095), en utilisant un scénario modéré (RCP 4.5) et un scénario plus extrême (RCP 8.5) de réchauffement climatique. Cette recherche doctorale a mis en évidence les conditions anoxiques fréquentes et persistantes présentes dans de nombreux lacs de thermokarst. Aussi, ces lacs sont stratifiés pendant l’hiver comme des concentrations élevées d’ions s’accumulent dans leurs hypolimnions à cause de la formation du couvert de glace (cryoconcentration) et de la libération des ions avec la respiration bactérienne. Les différences de température contribuent également à la stabilité de la stratification. La dynamique de mélange des lacs de thermokarst étudiés était contrastée : la colonne d’eau de certains lacs se mélangeait entièrement deux fois par année, d’autres lacs se mélangeaient qu’une seule fois en automne, alors que certains lacs ne se mélangeaient jamais entièrement. Les populations bactériennes étaient abondantes et très actives, avec des taux respiratoires comparables à ceux mesurés dans des écosystèmes méso-eutrophes ou eutrophes des zones tempérées de l’hémisphère nord. L’érosion des matériaux contenus dans le sol des tourbières pergélisolées procure un substrat riche en carbone et en éléments nutritifs aux populations bactériennes, et ils constituent des habitats propices à la colonisation par des populations de bactéries associées aux particules. Le modèle de la concentration d’oxygène dissous dans un lac a révélé que le réchauffement des températures de l’air pourrait amincir le couvert de glace et diminuer sa durée, intensifiant le transfert de l’oxygène atmosphérique vers les eaux de surface. Ainsi, la concentration en oxygène dissous dans la colonne d’eau de ce lac augmenterait et les périodes de conditions anoxiques pourraient devenir plus courtes. Finalement, cette thèse doctorale insiste sur le rôle des lacs de thermokarst comme des réacteurs biogéochimiques pour la dégradation du carbone organique, qui était retenu dans les sols gelés, en gaz à effet de serre libérés dans l’atmosphère. L’oxygène est un indicateur sensible du mélange de la colonne d’eau et de la dynamique chimique des lacs, en plus d’être une variable clé des processus métaboliques.
Resumo:
Fluxes of nutrients (NH sub(4) super(+), NO sub(3) super(-), PO sub(4) super(3-) and Si(OH) sub(4)) were studied on an intertidal mudflat in Marennes-Oleron Bay, France, at two different seasons and at different times of the emersion period. Fluxes through the sediment-water interface were both calculated from vertical profiles of nutrient concentration in pore-water (diffusive fluxes, JD) and measured in light and dark benthic mini-chambers (measured fluxes, J sub(0)). Results indicate that ammonia was mainly released in summer while nitrate was mainly taken up in late winter. This uptake from the overlying water was probably due to the coupling of nitrification-denitrification within the sediment. The J sub(0) /J sub(D) ratio further indicates that bioturbation likely enhanced ammonia release in summer. Concerning phosphate, the comparison of diffusive and measured fluxes suggests that PO sub(4) super(3-) could be assimilated by the biofilm in winter while it was released in summer at a high rate due to both bioturbation and desorption because of the relative summer anoxic conditions. Silica was always released by the sediment, but at a higher rate in summer. Statistically significant differences in measured fluxes were detected in dark chambers at different times of low tide, thus suggesting a short-term variability of fluxes. Microphytobenthos preferred ammonia to nitrate, but assimilated nitrate when ammonia was not available. It also turned out that benthic cells could be limited in nitrogen during low tide in late winter. In summer, ammonia was not limiting and microphytobenthic activity significantly decreased the measured flux of NH sub(4) super(+) in the middle of low tide when its photosynthetic capacity was highest.
Resumo:
In the present investigation, bulk and chemical partitioning of elements in the Shefa-Rud riverbed sediments are studied. Higher concentrations of elemental concentrations have been observed in estuarine zone when compared with riverine sediments (except for Al, Fe, Pb and Mn). Manganese is mobilized under anoxic conditions prevailing in the Caspian Sea. Lithogenous materials are greatly diluted in the estuarine zone by various pollutants present in the Caspian Sea. Organic metallic bonds are not significantly present in the area of study. Geological units of the area of study have resulted in the lower concentrations of elemental concentrations of riverbed sediments when compared with published values for mean crust and world sediments ones. Though, cluster analysis has clearly shown the importance of alumina-silicates in controlling the distribution of Fe and Mn in riverbed sediments but it could not depict controlling mechanism for other studied elements. Geochemical Index (Igeo) and Enrichment Factor (EF) values are indicative of a clean environment throughout the river course. These values are in a well agreement with results of chemical partitioning data. Quantification of EF values is not logically possible and therefore Igeo values can be used more effectively.
Resumo:
The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) corresponds to worldwide deposition of black shales with total organic carbon (TOC) content > 2% and a d13C positive excursion up to ~5‰. OAE1a has been related to large igneous province volcanism and dissociation of methane hydrates during the Lower Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich deposits associated with OAE1a, which are also characterized by positive spikes of the d13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates localized responses decoupled from complex global forcing factors. The present research is a high-resolution, multiproxy approach to assess the paleoenvironmental conditions that led to enhanced carbon sequestration from the late Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish Pyrenees. The basin developed as the result of extensional tectonism linked to the opening of the Atlantic Ocean. At the field scale the section consists of a sequence of alternating beds of cm – m-scale, medium-gray to grayish-black limestones and marlstones with TOC up to ~4%. The results indicate that the lowest 85 m of the section, from latest Barremian –earliest Aptian, characterize a deepening phase of the basin concomitant with sustained riverine flux and intensified primary productivity. These changes induced a shift in the sedimentation pattern and decreased the oxygen levels in the water column through organic matter respiration and limited ventilation of the basin. The upper 155 m comprising the earliest – late-early Aptian document the occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a positive shift in d13C of ~5‰). However, a low enrichment of redox-sensitive trace elements indicates that the basin did not achieve anoxic conditions. The results also suggest that a shallower-phase of the basin, coeval with platform progradation, may have increased ventilation of the basin at the same time that heightened sedimentation rates and additional input of organic matter from terrestrial sources increased the burial and preservation rate of TOC in the sediment.
Resumo:
IF1, the endogenous inhibitor protein of mitochondrial F1Fo-ATPase, has raised interest in cancer research due to its overexpression in solid tumours compared to normal tissues. Physiologically, IF1 protects cells from energy depletion by limiting the ATP hydrolytic activity of ATP synthase triggered by mitochondrial depolarization caused by oxygen deficiency as it occurs during ischemic episodes. Considering both the physiological function of IF1 and that cancer cells in solid tumour are frequently exposed to oxygen deprivation, we hypothesized that IF1 overexpression represents a strategy that cancer cells develop to protect themselves from energy depletion under conditions of low oxygen availability. To assess this, we assayed the bioenergetic changes in 143B and HCT116 cancer cells with different metabolic features following stable silencing of IF1. Interestingly, we found that in both cell lines exposed to oxygen deprivation conditions the presence of IF1 limits the energy dissipation due to the activation of the ATP hydrolytic activity of ATP synthase. Furthermore, the analyses of cellular growth and viability revealed that the IF1 silencing inhibited proliferation in the highly glycolytic 143B cells, while it induced more than 50% of cellular death in HCT116 OXPHOS-dependent cells, indicating that the energetic advantage conferred by IF1 is essential for cancer cell proliferation or survival depending on the energy metabolism of each cell line. Moreover, under mitochondrial depolarization conditions, both mitophagy and mitochondrial biogenesis markers were found up-regulated in IF1-expressing cells only, thus indicating a continuous renewal and preservation of the mitochondrial mass. Taken together, our results sustain the idea that IF1 overexpression supports cancer cell adaptation to hypoxic or anoxic conditions also favouring the proliferation of re-oxygenated cells by promptly providing functional mitochondria.
Resumo:
Since the study of Large Dam Reservoirs is of worldwide interest, in this PhD project we investigated the Ridracoli reservoir, one of the main water supply in Emilia-Romagna (north-eastern Italy). This work aims to characterize waters and sediments to better understand their composition, interactions and any process that occurs, for a better geochemical and environmental knowledge of the area. Physical and chemical analyses on the water column have shown an alternation of stratification and mixing of water in the reservoir’s water body due to seasonal variations in temperature and density. In particular, it was observed the establishment, in late summer, of anoxic conditions at the bottom, which in turn affects the concentration and mobility of some elements of concern (e.g. Fe and Mn) for the water quality. Sediments within the reservoir and from surrounding areas were analysed for organic matter, total inorganic composition and grain size, assessing the inter-element relationship, grain size, geological background and damming influences on their chemistry, through descriptive statistics, Principal Component Analysis and Cluster Analysis. The reservoir’s area was also investigated by pseudo total composition (Aqua Regia digestion), degree of elements extractability, and enrichment factors, then analysed and compared to limits by law and literature. Sediment cores, interstitial waters, and benthic chamber data from the bottom were of great interest due to organic matter degradation, early diagenesis, mineral formation at water-sediment interface and observed flows. Finally, leaching test and extraction procedures, of environmental interest, showed peculiar partitioning, both regarding spatial and in-depth distribution, and the absence of pollution. Collectively, our results are useful for the comprehension of processes that occur in water and sediments of Ridracoli reservoir, providing important knowledges on the site that could be relevant for the management of the resource and the planning of future interventions.
Resumo:
The early Aptian (125 to 121 Ma) records an episode of severe environmental change including a major perturbation of the carbon cycle, an oceanic anoxic event (OAE 1a, 122.5 Ma), a platform drowning episode and a biocalcification crisis. We propose to trace changes in the oxygenation state of the ocean during the early Aptian anoxic event using the redox-sensitive trace-element (RSTE) distribution, phosphorus accumulation rates (PARs) and organic-matter characterization in three different basins of the western Tethys. The following sections have been investigated: Gorgo a Cerbara (central Italy) in the Umbria Marche basin, Glaise (SE France) in the Vocontian basin and Cassis/La Bédoule (SE France) located in the Provencal basin. In the Gorgo a Cerbara section, RSTE distributions show a low background level along the main part of the section, contrasted by different maxima in concentrations within the Selli level. In the Glaise section, the Goguel level displays a weak increase in RSTE contents coeval with moderate TOC values. At Cassis/La Bédoule, no significant RSTE enrichments have been observed in sediments equivalent to the Selli level. These differences in the records of the geochemical proxies of the Selli level or its equivalent indicate the deposition under different redox conditions, probably related to the paleogeography. Our data indicate the development of anoxic–euxinic conditions in the deeper part of the Tethys during OAE 1a, whereas in the shallower environments, conditions were less reducing. Moreover, at Gorgo a Cerbara, the Selli level is characterized by rapid changes in the intensity of reducing conditions in the water column. Ocean eutrophication seems to be a major factor in the development and the persistence of anoxia as suggested by the PAR evolution. Higher PAR values at the onset of OAE 1a suggest an increase in nutrient input, whereas the return to lower values through the first part of the OAE 1a interval may be related to the weakened capacity to retain P in the sedimentary reservoir due to bottom-water oxygen depletion. This general pattern is contrasted by the data of Gorgo a Cerbara, where the sediments deposited during the OAE 1a interval show P-enrichments (mainly authigenic P). This is associated with maxima in TOC values and Corg:Ptot ratios, suggesting that a part of the remobilized P was trapped in the sediments and as such prevented from returning to the water column.
Resumo:
A detailed geochemical analysis was performed on the upper part of the Maiolica Formation in the Breggia (southern Switzerland) and Capriolo sections (northern Italy). The analysed sediments consist of well-bedded, partly siliceous, pelagic carbonate, which lodges numerous thin, dark and organic-rich layers. Stable-isotope, phosphorus, organic-carbon and a suite of redox-sensitive trace-element contents (RSTE: Mo, U, Co, V and As) were measured. The RSTE pattern and C-org:P-tot ratios indicate that most organic-rich layers were deposited under dysaerobic rather than anaerobic conditions and that latter conditions were likely restricted to short intervals in the latest Hauterivian, the early Barremian and the pre-Selli early Aptian. Correlations are both possible with organic-rich intervals in central Italy (the Gorgo a Cerbara section) and the Boreal Lower Saxony Basin, as well as with the facies and drowning pattern in the Helvetic segment of the northern Tethyan carbonate platform. Our data and correlations suggest that the latest Hauterivian witnessed the progressive installation of dysaerobic conditions in the Tethys, which went along with the onset in sediment condensation, phosphogenesis and platform drowning on the northern Tethyan margin, and which culminated in the Faraoni anoxic episode. This episode is followed by further episodes of dysaerobic conditions in the Tethys and the Lower Saxony Basin, which became more frequent and progressively stronger in the late early Barremian. Platform drowning persisted and did not halt before the latest early Barremian. The late Barremian witnessed diminishing frequencies and intensities in dysaerobic conditions, which went along with the progressive installation of the Urgonian carbonate platform. Near the Barremian-Aptian boundary, the increasing density in dysaerobic episodes in the Tethyan and Lower Saxony Basins is paralleled by a change towards heterozoan carbonate production on the northern Tethyan shelf. The following return to more oxygenated conditions is correlated with the second phase of Urgonian platform growth and the period immediately preceding and corresponding to the Selli anoxic episode is characterised by renewed platform drowning and the change to heterozoan carbonate production. Changes towards more humid climate conditions were the likely cause for the repetitive installation of dys- to anaerobic conditions in the Tethyan and Boreal basins and the accompanying changes in the evolution of the carbonate platform towards heterozoan carbonate-producing ecosystems and platform drowning.
Resumo:
Un âge synchrone (partie moyenne de l'Aptien inférieur) de l'ennoiement de la plate-forme Urgonienne helvétique en relation avec l'événement océanique anoxique 1a ("événement Selli"). - La fin de la plate-forme urgonienne, calibrée par analyse des isotopes stables du carbone sur roche totale et par biostratigraphie basée sur les ammonites, est datée du milieu de l'Aptien inférieur (Près de la limite des zones weissi et deshayesi). Cet arrêt, synchrone dans des coupes représentatives du domaine helvétique alpin, est un événement environemental majeur renregistré en France, en Espagne, au Protugal, en Oman, au Mexique et dans le domaine Pacifique. En tenant compte des limites de résolution de la biostatrigraphie et des autres techniques de datation, cet épisode semble également être synchrone à l'échelle globale. Pour beaucoup d'auteurs, la disparition de récifs de coraux et de rudistes corrélée à la fin de la sédimentation urgonienne correspond à la mise en place de conditions anoxiques à l'Aptien inférieur. Celles-ci caractérisent un événement d'importance global: l'événement anoxique OAE 1a.
Resumo:
To what extent hypoxia alters the adenosine (ADO) system and impacts on cardiac function during embryogenesis is not known. Ectonucleoside triphosphate diphosphohydrolase (CD39), ecto-5'-nucleotidase (CD73), adenosine kinase (AdK), adenosine deaminase (ADA), equilibrative (ENT1,3,4), and concentrative (CNT3) transporters and ADO receptors A1, A2A, A2B, and A3 constitute the adenosinergic system. During the first 4 days of development chick embryos were exposed in ovo to normoxia followed or not followed by 6 h hypoxia. ADO and glycogen content and mRNA expression of the genes were determined in the atria, ventricle, and outflow tract of the normoxic (N) and hypoxic (H) hearts. Electrocardiogram and ventricular shortening of the N and H hearts were recorded ex vivo throughout anoxia/reoxygenation ± ADO. Under basal conditions, CD39, CD73, ADK, ADA, ENT1,3,4, CNT3, and ADO receptors were differentially expressed in the atria, ventricle, and outflow tract. In H hearts ADO level doubled, glycogen decreased, and mRNA expression of all the investigated genes was downregulated by hypoxia, except for A2A and A3 receptors. The most rapid and marked downregulation was found for ADA in atria. H hearts were arrhythmic and more vulnerable to anoxia-reoxygenation than N hearts. Despite downregulation of the genes, exposure of isolated hearts to ADO 1) preserved glycogen through activation of A1 receptor and Akt-GSK3β-GS pathway, 2) prolonged activity and improved conduction under anoxia, and 3) restored QT interval in H hearts. Thus hypoxia-induced downregulation of the adenosinergic system can be regarded as a coping response, limiting the detrimental accumulation of ADO without interfering with ADO signaling.