942 resultados para anistropic growth constitutive equations mixture theory poroelasticity rational thermodynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of advanced materials aimed at improving human life has been performed since time immemorial. Such studies have created everlasting and greatly revered monuments and have helped revolutionize transportation by ushering the age of lighter–than–air flying machines. Hence a study of the mechanical behavior of advanced materials can pave way for their use for mankind’s benefit. In this school of thought, the aim of this dissertation is to broadly perform two investigations. First, an efficient modeling approach is established to predict the elastic response of cellular materials with distributions of cell geometries. Cellular materials find important applications in structural engineering. The approach does not require complex and time-consuming computational techniques usually associated with modeling such materials. Unlike most current analytical techniques, the modeling approach directly accounts for the cellular material microstructure. The approach combines micropolar elasticity theory and elastic mixture theory to predict the elastic response of cellular materials. The modeling approach is applied to the two dimensional balsa wood material. Predicted properties are in good agreement with experimentally determined properties, which emphasizes the model’s potential to predict the elastic response of other cellular solids, such as open cell and closed cell foams. The second topic concerns intraneural ganglion cysts which are a set of medical conditions that result in denervation of the muscles innervated by the cystic nerve leading to pain and loss of function. Current treatment approaches only temporarily alleviate pain and denervation which, however, does not prevent cyst recurrence. Hence, a mechanistic understanding of the pathogenesis of intraneural ganglion cysts can help clinicians understand them better and therefore devise more effective treatment options. In this study, an analysis methodology using finite element analysis is established to investigate the pathogenesis of intraneural ganglion cysts. Using this methodology, the propagation of these cysts is analyzed in their most common site of occurrence in the human body i.e. the common peroneal nerve. Results obtained using finite element analysis show good correlation with clinical imaging patterns thereby validating the promise of the method to study cyst pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As firms have more assets in place, more of management’s limited attention is focused on managing assets in place rather than developing new growth options. Consequently, as firms grow older, they have fewer growth options and a lower ability to generate new growth options. This simple theory predicts that Tobin’s q falls with age. Further, competition in the product market is expected to slow down the decrease in Tobin’s q because it forces firms to look for alternative sources of rents. Similarly, greater competition in the labor market reduces the decrease in Tobin’s q with age because old firms are in a better position to hire employees that can help with innovation. In contrast, competition in the market for corporate control should accelerate the decline because it forces management to focus more on managing assets in place whose performance is more directly observable than on developing growth options where results may not be observable for some time. We find strong support for these predictions in tests using exogenous variation in competition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As firms have more assets in place, more of management’s limited attention is focused on managing assets in place rather than developing new growth options. Consequently, as firms grow older, they have fewer growth options and a lower ability to generate new growth options. This simple theory predicts that Tobin’s q falls with age. Further, competition in the product market is expected to slow down the decrease in Tobin’s q because it forces firms to look for alternative sources of rents. Similarly, greater competition in the labor market reduces the decrease in Tobin’s q with age because old firms are in a better position to hire employees that can help with innovation. In contrast, competition in the market for corporate control should accelerate the decline because it forces management to focus more on managing assets in place whose performance is more directly observable than on developing growth options where results may not be observable for some time. We find strong support for these predictions in tests using exogenous variation in competition

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a first group of theoretical and experimental works undertaken at the Polytechnic University of Madrid. One major purpose is to obtain a structural model for the assessment of historical Latin-American vertically laminated planked timber arches built by the Spanish, mainly in the XVII and XVIII centuries. Many of those constructions still stand and represent a notable historical heritage. Pedro Hurtado recently presented his Ph. D. thesis on historical and construction topics. A structural study was then undertaken. This step of the structural research focussed on static analysis, most especially the deformation in the connection system. This article describes part of this first structural research. Even though it is still at a basic level, it shows reasonable agreement with the experimental results. Further static analytical models are been now developed and implemented. The next stage will address the dynamic problem, even though improvements will be made also in the constitutive equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine. A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests. As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated. A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical and experimental study of ballistic impacts at various temperatures on precipitation hardened Inconel 718 nickel-base superalloy plates has been performed. A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion has been implemented in LS-DYNA non-linear finite element code to model the mechanical behaviour of such an alloy. The ballistic impact tests have been carried out at three temperatures: room temperature (25 °C), 400 °C and 700 °C. The numerical study showed that the mesh size is crucial to predict correctly the shear bands detected in the tested plates. Moreover, the mesh size convergence has been achieved for element sizes on the same order that the shear bands. The residual velocity as well as the ballistic limit prediction has been considered excellent for high temperature ballistic tests. Nevertheless, the model has been less accurate for the numerical simulations performed at room temperature, being though in reasonable agreement with the experimental data. Additionally, the influence that the Lode angle had on quasi-static failure patterns such as cup-cone and slanted failure has been studied numerically. The study has revealed that the combined action of weakened constitutive equations and Lode angle dependent failure criterion has been necessary to predict the previously-mentioned failure patterns

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A molecular model of poorly understood hydrophobic effects is heuristically developed using the methods of information theory. Because primitive hydrophobic effects can be tied to the probability of observing a molecular-sized cavity in the solvent, the probability distribution of the number of solvent centers in a cavity volume is modeled on the basis of the two moments available from the density and radial distribution of oxygen atoms in liquid water. The modeled distribution then yields the probability that no solvent centers are found in the cavity volume. This model is shown to account quantitatively for the central hydrophobic phenomena of cavity formation and association of inert gas solutes. The connection of information theory to statistical thermodynamics provides a basis for clarification of hydrophobic effects. The simplicity and flexibility of the approach suggest that it should permit applications to conformational equilibria of nonpolar solutes and hydrophobic residues in biopolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The friction of rocks in the laboratory is a function of time, velocity of sliding, and displacement. Although the processes responsible for these dependencies are unknown, constitutive equations have been developed that do a reasonable job of describing the laboratory behavior. These constitutive laws have been used to create a model of earthquakes at Parkfield, CA, by using boundary conditions appropriate for the section of the fault that slips in magnitude 6 earthquakes every 20-30 years. The behavior of this model prior to the earthquakes is investigated to determine whether or not the model earthquakes could be predicted in the real world by using realistic instruments and instrument locations. Premonitory slip does occur in the model, but it is relatively restricted in time and space and detecting it from the surface may be difficult. The magnitude of the strain rate at the earth's surface due to this accelerating slip seems lower than the detectability limit of instruments in the presence of earth noise. Although not specifically modeled, microseismicity related to the accelerating creep and to creep events in the model should be detectable. In fact the logarithm of the moment rate on the hypocentral cell of the fault due to slip increases linearly with minus the logarithm of the time to the earthquake. This could conceivably be used to determine when the earthquake was going to occur. An unresolved question is whether this pattern of accelerating slip could be recognized from the microseismicity, given the discrete nature of seismic events. Nevertheless, the model results suggest that the most likely solution to earthquake prediction is to look for a pattern of acceleration in microseismicity and thereby identify the microearthquakes as foreshocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references and index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building on the ontology of evolutionary realism recently proposed by Dopfer and Potts (forthcoming), we develop an analytical framework for evolutionary economics with a micro-meso-macro architecture. The motive for reconception is to make clear the highly complex and emergent nature of existence and change in economic evolution. For us, the central insight is that an economic system is a population of rules, a structure of rules, and a process of rules. The economic system is a rule-system contained in what we call the meso. From the evolutionary perspective, one cannot directly sum micro into macro. Instead, we conceive of an economic system as a set of meso units, where each meso consists of a rule and its population of actualizations. The proper analytical structure of evolutionary economics is in terms of micro-meso-macro. Micro refers to the individual carriers of rules and the systems they organize, and macro consists of the population structure of systems of meso. Micro structure is between the elements of the meso, and macro structure is between meso elements. The upshot is an ontologically coherent framework for analysis of economic evolution as change in the meso domain - in the form of what we call a meso trajectory - and a way of understanding the micro-processes and macro-consequences involved. We believe that the micro-meso-macro analytical framework can greatly enhance the focus, clarity, and, ultimately, power, of evolutionary economic theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Double Convected Pom-Pom model was recently introduced to circumvent some numerical and theological defects found in other formulations of the Pom-Pom concept. It is used here for the simulation of a benchmark problem: the flow in an abrupt planar contraction. The predictions are compared with birefringence measurements and show reasonable quantitative agreement with experimental data. A parametric study is also carried out with the aim of analysing the effect of the branching parameter on vortex dynamics and extrudate swell. The results show that the Double Convected Pom-Pom model (DCPP) model is able to discriminate between branched and linear macromolecular structures in accordance with experimental observations. In that respect, the role of the extensional properties in determining complex flow behaviour is stressed. Also, the ratio of the first normal stress difference to the shear stress appears to play a major role in die swell observation. For the time being, the role of the second normal stress difference appears to be less obvious to evaluate in this complex flow. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work describes the programme of activities relating to a mechanical study of the Conform extrusion process. The main objective was to provide a basic understanding of the mechanics of the Conform process with particular emphasis placed on modelling using experimental and theoretical considerations. The experimental equipment used includes a state of the art computer-aided data-logging system and high temperature loadcells (up to 260oC) manufactured from tungsten carbide. Full details of the experimental equipment is presented in sections 3 and 4. A theoretical model is given in Section 5. The model presented is based on the upper bound theorem using a variation of the existing extrusion theories combined with temperature changes in the feed metal across the deformation zone. In addition, constitutive equations used in the model have been generated from existing experimental data. Theoretical and experimental data are presented in tabular form in Section 6. The discussion of results includes a comprehensive graphical presentation of the experimental and theoretical data. The main findings are: (i) the establishment of stress/strain relationships and an energy balance in order to study the factors affecting redundant work, and hence a model suitable for design purposes; (ii) optimisation of the process, by determination of the extrusion pressure for the range of reduction and changes in the extrusion chamber geometry at lower wheel speeds; and (iii) an understanding of the control of the peak temperature reach during extrusion.