934 resultados para angiotensin ii
Resumo:
To assess the importance of the leucine residues in positions 262 and 265 of the angiotensin AT, receptor for signaling pathways and receptor expression and regulation, we compared the properties of CHO cells transfected with the wild type or the L262D or L265D receptor point mutants. It was found that the two mutants significantly increased the basal intracellular cyclic AMP (cAMP) formation in an agonist-independent mode. The morphology transformation of CHO cells was correlated with the increased cAMP formation, since forskolin, a direct activator of adenylate cyclase mimicked this effect on WT-expressing CHO cells. DNA synthesis was found to be inhibited in these cell lines, indicating that cAMP may also have determined the inhibitory effect on cell growth, in addition to the cell transformation from a tumorigenic to a non-tumorigenic phenotype. However a role for an increased Ca2(+) influx induced by the mutants in non-stimulated cells cannot be ruled out since this ion also was shown to cause transformed cells to regain the morphology and growth regulation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Blockade of central angiotensin receptors with the specific antagonist [Leu8]-ANG II abolished water ingestion and water and sodium excretion induced by infusion of angiotensin II (ANGII) into the lateral ventricle (LV) of rats. The antagonist reduced but did not suppress the salt appetite induced by ANGII infusion. Subcutaneous injection of deoxycorticosterone acetate (DOCA) caused increases in water and 3% NaCl ingestion and decreases in sodium excretion. When central ANGII infusion was combined with peripheral DOCA, the water intake was similar to that induced by ANGII alone and the ingestion of 3% NaCl was increased, whereas sodium excretion was inhibited. When ANGII was infused alone, a detailed temporal analysis of fluid and sodium balance showed a negative balance similar those saline controls that persisted throughout the experiment. Combined administration of ANGII and DOCA induce significant changes in water and sodium balance. Sodium and water maintained a positive balance through out the 8-h experiment. The data support an interaction of central ANGII and DOCA on sodium intake and water and sodium balance. © 1994.
Resumo:
The present study was performed to investigate the effect of treatment with furosemide on the pressor response induced by intracerebroventricular (i.c.v.) injections of cholinergic (carbachol) and adrenergic (norepinephrine) agonists, angiotensin II (ANGII) and hypertonic saline (HS, 2 M NaCl). The changes induced by furosemide treatment on the pressor response to intravenous (i.v.) norepinephrine, ANGII and arginine vasopressin (AVP) were also studied. Rats with a stainless-steel cannula implanted into the lateral ventricle (LV) were used. Two injections of furosemide (30 mg/kg b.wt. each) were performed 12 and 1 h before the experiments. Treatment with furosemide reduced the pressor response induced by carbachol, norepinephrine and ANGII i.c.v., but no change was observed in the pressor response to i.c.v. 2 M NaCl. The pressor response to i.v. ANGII and norepinephrine, but not AVP, was also reduced after treatment with furosemide. These results show that the treatment with furosemide impairs the pressor responses induced by central or peripheral administration of adrenergic agonist or ANGII, as well as those induced by central cholinergic activation. The results suggest that the treatment with furosemide impairs central and peripheral pressor responses mediated by sympathetic activation and ANGII, but not those produced by AVP. © 1992.
Resumo:
We investigated the effects of previous central treatment with prazosin (an α1-adrenoceptor antagonist) or clonidine (an α2-adrenoceptor agonist) on the dipsogenic, pressor and tachycardic responses produced by intracerebroventricular (ICV) injection of angiotensin II (AII) in conscious rats. Holtzman rats with a chronic cannula implanted in the lateral ventricle were tested for dipsogenic and cardiovascular (arterial pressure and heart rate) responses in separate experiments. Previous ICV treatment with clonidine (20, 40, 80 and 120 nmol) abolished the pressor, tachycardic and dipsogenic effects of ICV AII. After all doses of prazosin (40, 80 and 120 nmol), AII induced bradycardic responses, but only the 80 and 120 nmol doses of prazosin reduced the pressor responses to AII. Prazosin produced no alteration in the dipsogenic effect of AII. The results show that the periventricular α1-adrenoceptors are involved only in the cardiovascular responses produced by central AII, whereas clonidine acting through α2-adrenergic and/or imidazole receptors can modulate all actions of AII. © 1990.
Resumo:
To determine whether central α1 and α2-adrenergic mechanisms are involved in urinary sodium and potassium excretion and urine volume induced by angiotensin II (ANGII), these renal parameters were measured in volume-expanded Holtzman rats with cannulas implanted into lateral ventricle (LV) and lateral hypothalamus (LH). The injection of ANGII into LV in rats with volume expansion reduced the sodium, potassium and urine excretion in comparison to the control injections of isotonic saline, whereas prazosin (α1 antagonist) potentiated these effects. Clonidine (α2 agonist) and yohimbine (α2 antagonist) injected into LH previous to injection of ANGII into LV also abolished the inhibitory effect of ANGII. These results suggest that the discharge of central alpha-adrenergic receptors has dual inhibitory and excitatory effect on antinatriuretic, antikaliuretic and antidiuretic effect induced by central ANGII in volume-expanded rats. © 1995.
Resumo:
The present experiments were conducted to investigate the role of the α1- and α2-adrenergic receptors of the lateral hypothalamus (LH) on the drinking response elicited by intracerebroventricular (i.c.v) injections of carbachol and angiotensin II (AII) in rats. Clonidine (an α2-adrenergic agonist) injected into the LH produced a dose-dependent reduction of the drinking responses elicited by i.c.v. administration of carbachol and AII. The α1-adrenergic agonist phenylephrine injected into the LH reduced the dipsogenic response to i.c.v. AII, but not to carbachol. Injection of yohimbine (an α2-adrenergic antagonist) and prazosin (an α1-adrenergic antagonist) into the LH also reduced the water intake produced by i.c.v. injection of AII. Previous injection of α1- or α2-adrenergic antagonists into the LH increased the antidipsogenic effect of clonidine or phenylephrine injected into the same area on the water intake induced by i.c.v. AII. These results show that the α1- and α2-adrenergic receptors of the LH are involved in the control of drinking responses elicited by i.c.v. injection of AII in rats. They also show that clonidine, but not phenylephrine, suppresses the drinking induced by i.c.v. carbachol. The data suggest that the discharge of central α-adrenergic receptors has a dual (inhibitory and excitatory) effect on water intake induced by central AII. © 1991.
Resumo:
In the present study we investigated the effect of electrolytic lesion of the medial septal area (MSA) on the pressor and dipsogenic response to cholinergic activation and angiotensin II (ANGII) injection into the subfornical organ (SFO) in rats. In addition the effect of MSA lesion on the natriuresis, kaliuresis and diuresis after cholinergic activation of the SFO was also investigated. Sham- and MSA-lesioned rats with a stainless steel cannula implanted into the SFO was used. The injection of ANGII (12 ng) into the SFO in sham rats produced pressor (24 ± 2 mmHg) and dipsogenic (9.6 ± 1.1 ml/h) responses. MSA lesion, both acute (2-6 days) and chronic (15-19 days), reduced the pressor (14 ± 2 mmHg) and dipsogenic (2.7 ± 1 ml/h) responses to ANGII into SFO. The injection of the cholinergic agonist carbachol (2 nmol) into the SFO in sham rats produced pressor (48 ± 4 mmHg), dipsogenic (10 ± 1.2 ml/h), natriuretic (457 ± 58 μEq/2 h) and kaliuretic (249 ± 16 μEq/2 h) responses. Acute, but not chronic MSA lesion reduced the pressor (27 ± 3 mmHg), natriuretic (198 ± 55 μEq/2 h) and kaliuretic (128 ± 16 μEq/2 h) responses to carbachol into SFO. No change in the dipsogenic response to carbachol into the SFO was observed in MSA-lesioned rats. Antidiuresis after carbachol was observed only in MSA-lesioned rats. The present results show that the MSA plays a role on the pressor, natriuretic and kaliuretic responses to cholinergic activation of the SFO in rats and on the pressor and dipsogenic responses to ANGII into the same area. In addition, they provide circumstancial evidence for separate circuits subserving the dipsogenic response to central cholinergic and angiotensinergic activation. A facilited diuresis after MSA lesion is also suggested.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Angiotensin II (All), the active component of the renin angiotensin system (RAS), plays a vital role in the regulation of physiological processes of the cardiovascular system, but also has autocrine and paracrine actions in various tissues and organs. Many studies have shown the existence of RAS in the pancreas of humans and rodents. The aim of this study was to evaluate potential signaling pathways mediated by All in isolated pancreatic islets of rats. Phosphorylation of MAPKs (ERK1/2, JNK and p38MAPK), and the interaction between proteins JAK/STAT were evaluated. All increased JAK2/STAT1 (42%) and JAK2/STAT3 (100%) interaction without altering the total content of JAK2. Analyzing the activation of MAPKs (ERK1/2, JNK and p38MAPK) in isolated pancreatic islets from rats we observed that All rapidly (3 min) promoted a significant increase in the phosphorylation degree of these proteins after incubation with the hormone. Curiously JNK protein phosphorylation was inhibited by DPI, suggesting the involvement of NAD(P)H oxidase in the activation of protein. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pretreatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.
Resumo:
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 +/- 0.9 days; 2369 +/- 491 g) were randomly assigned to receive saline (placebo, P) or the AT(1) receptor (AT(1)-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO(2) = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT(1)-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT(1)-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT(1)-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT(1)-R staining, but C animals showed weak iNOS and AT(1)-R staining. Macrophages of L and P animals showed moderate and weak AT(2)-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT(1)-R blockade. We suggest that AT(1)-R blockade might act through AT(2)-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.