972 resultados para and metrology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method of accurately controlling the position of a mobile robot using an external Large Volume Metrology (LVM) instrument is presented in this paper. Utilizing a LVM instrument such as the laser tracker in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real- Time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitization scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. © Springer-Verlag Berlin Heidelberg 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerospace manufacturers typically use monolithic steel fixtures to control the form of assemblies. This tooling is very expensive, has long lead times and has little ability to accommodate product variation and design changes. Since the tool setting and recertification process is manual and time consuming, monolithic structures are required in order to maintain the tooling tolerances for multiple years without recertification. This paper introduces the Metrology Enhanced Tooling for Aerospace (META) Framework which interfaces multiple metrology technologies with the tooling, components, workers and automation. This will allow rapid or even real-time fixture re-certification with improved product verification leading to a reduced risk of product non-conformance and increased fixture utilization while facilitating flexible fixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement and verification of products and processes during the early design is attracting increasing interest from high value manufacturing industries. Measurement planning is deemed as an effective means to facilitate the integration of the metrology activity into a wider range of production processes. However, the literature reveals that there are very few research efforts in this field, especially regarding large volume metrology. This paper presents a novel approach to accomplish instruments selection, the first stage of measurement planning process, by mapping measurability characteristics between specific measurement assignments and instruments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimensional and form inspections are key to the manufacturing and assembly of products. Product verification can involve a number of different measuring instruments operated using their dedicated software. Typically, each of these instruments with their associated software is more suitable for the verification of a pre-specified quality characteristic of the product than others. The number of different systems and software applications to perform a complete measurement of products and assemblies within a manufacturing organisation is therefore expected to be large. This number becomes even larger as advances in measurement technologies are made. The idea of a universal software application for any instrument still appears to be only a theoretical possibility. A need for information integration is apparent. In this paper, a design of an information system to consistently manage (store, search, retrieve, search, secure) measurement results from various instruments and software applications is introduced. Two of the main ideas underlying the proposed system include abstracting structures and formats of measurement files from the data so that complexity and compatibility between different approaches to measurement data modelling is avoided. Secondly, the information within a file is enriched with meta-information to facilitate its consistent storage and retrieval. To demonstrate the designed information system, a web application is implemented. © Springer-Verlag Berlin Heidelberg 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic Functionalisation, Doping and Characterisation of Semiconductor Surfaces for Future CMOS Device Applications Semiconductor materials have long been the driving force for the advancement of technology since their inception in the mid-20th century. Traditionally, micro-electronic devices based upon these materials have scaled down in size and doubled in transistor density in accordance with the well-known Moore’s law, enabling consumer products with outstanding computational power at lower costs and with smaller footprints. According to the International Technology Roadmap for Semiconductors (ITRS), the scaling of metal-oxide-semiconductor field-effect transistors (MOSFETs) is proceeding at a rapid pace and will reach sub-10 nm dimensions in the coming years. This scaling presents many challenges, not only in terms of metrology but also in terms of the material preparation especially with respect to doping, leading to the moniker “More-than-Moore”. Current transistor technologies are based on the use of semiconductor junctions formed by the introduction of dopant atoms into the material using various methodologies and at device sizes below 10 nm, high concentration gradients become a necessity. Doping, the controlled and purposeful addition of impurities to a semiconductor, is one of the most important steps in the material preparation with uniform and confined doping to form ultra-shallow junctions at source and drain extension regions being one of the key enablers for the continued scaling of devices. Monolayer doping has shown promise to satisfy the need to conformally dope at such small feature sizes. Monolayer doping (MLD) has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from the traditional silicon and germanium devices to emerging replacement materials such as III-V compounds This thesis aims to investigate the potential of monolayer doping to complement or replace conventional doping technologies currently in use in CMOS fabrication facilities across the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bedford Institute of Oceanography provided ship time on the C.S.S. Hudson during the B.I.0. 1967 Metrology and IODAL Cruise for surveying two separate bottom features in the North Atlantic; the Flemish Cap and the San Pablo Seamount one of the Kelvin Seamounts (also known as the New England Seamounts) about 400 miles SSE of Halifax, Nova Scotia. Underwater photography, dredging, and drilling showed San Pablo seamount to have a very considerable covering of manganese deposit, which may be recoverable by mining. San Pablo Seamount was surveyed and sampled; good hauls were made both on the top and on the slopes, at various depths from 500-1000 fathoms; in all cases samples of an unusual stratified manganese-iron ore were recovered. In the hope of gaining additional information in the immediate sample area, one of the dredges had been previously modified to accommodate underwater photographic equipment. X-ray chemical analyses indicate that the ore contains 20 to 25 per cent MnO2, with similar amounts of Fe2O3. Since bottom photographs indicate that these deposits form a continuous cover 1 foot to 3 feet thick over most of the seamount, it is estimated that there are ore reserves in the order of 10 to 30 M tons above 1,000 fathoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main features of the Greek currency are the big differences between emissions of the polis, which did not match either in their iconographic message types, not even in the met-rical pattern of their values. These differences were reflected in exchange systems ruled by the main sanctuaries that shrines stipu-lated thus giving official status to change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The engineering of liquid behavior on surfaces is important for infrastructure, transportation, manufacturing, and sensing. Surfaces can be rendered superhydrophobic by microstructuring, and superhydrophobic devices could lead to practical corrosion inhibition, self-cleaning, fluid flow control, and surface drag reduction. To more fully understand how liquid interacts with microstructured surfaces, this dissertation introduces a direct method for determining droplet solid-liquid-vapor interfacial geometry on microstructured surfaces. The technique performs metrology on molten metal droplets deposited onto microstructured surfaces and then frozen. Unlike other techniques, this visualization technique can be used on large areas of curved and opaque microstructured surfaces to determine contact line. This dissertation also presents measurements and models for how curvature and flexing of microstructured polymers affects hydrophobicity. Increasing curvature of microstructured surfaces leads to decreased slide angle for liquid droplets suspended on the surface asperities. For a surface with regularly spaced asperities, as curvature becomes more positive, droplets suspended on the tops of asperities are suspended on fewer asperities. Curvature affects superhydrophobicity because microscopic curvature changes solid-liquid interaction, pitch is altered, and curvature changes the shape of the three phase contact line. This dissertation presents a model of droplet interactions with curved microstructured surfaces that can be used to design microstructure geometries that maintain the suspension of a droplet when curved surfaces are covered with microstructured polymers. Controlling droplet dynamics could improve microfluidic devices and the shedding of liquids from expensive equipment, preventing corrosion and detrimental performance. This dissertation demonstrates redirection of dynamic droplet spray with anisotropic microstructures. Superhydrophobic microstructured surfaces can be economically fabricated using metal embossing masters, so this dissertation describes casting-based microfabrication of metal microstructures and nanostructures. Low melting temperature metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. The flexibility of the silicone mold permits casting of curved surfaces, which this dissertation demonstrates by fabricating a cylindrical metal roller with microstructures. The metal microstructures can be in turn used as a reusable molding tool. This dissertation also describes an industrial investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast into curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square, and triangular holes. This dissertation demonstrates molding of large, curved surfaces having surface microstructures using the aluminum mold. This work contributes a more full understanding of the phenomenon of superhydrophobicity and techniques for the economic fabrication of superhydrophobic microstructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an imaging technique for the 3D-form metrology of optical surfaces. It is based on the optical absorption in fluids situated between the surface and a reference. An improved setup with a bi-chromatic light source is fundamental to obtain reliable topographic maps. It is able to measure any surface finish (rough or polished), form and slope and independently of scale. We present results focused on flat and spherical optical surfaces, arrays of lenses and with different surface finish (rough-polished). We achieve form accuracies from several nanometers to sub-lambda for sag departures from tens to hundred of microns. Therefore, it seems suitable for the quality control in the production of precision aspheric, freeform lenses and other complex shapes on transparent substrates, independently of the surface finish.