888 resultados para analysis with NMR
Resumo:
Use of microarray technology often leads to high-dimensional and low- sample size data settings. Over the past several years, a variety of novel approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptation of the elastic net approach is presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time (AFT) model. Assessment of the two methods is conducted through simulation studies and through analysis of microarray data obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable selection method. The methods are moreover shown to be much more computationally efficient than their respective Cox- and AFT- based counterparts.
Resumo:
Suppose that having established a marginal total effect of a point exposure on a time-to-event outcome, an investigator wishes to decompose this effect into its direct and indirect pathways, also know as natural direct and indirect effects, mediated by a variable known to occur after the exposure and prior to the outcome. This paper proposes a theory of estimation of natural direct and indirect effects in two important semiparametric models for a failure time outcome. The underlying survival model for the marginal total effect and thus for the direct and indirect effects, can either be a marginal structural Cox proportional hazards model, or a marginal structural additive hazards model. The proposed theory delivers new estimators for mediation analysis in each of these models, with appealing robustness properties. Specifically, in order to guarantee ignorability with respect to the exposure and mediator variables, the approach, which is multiply robust, allows the investigator to use several flexible working models to adjust for confounding by a large number of pre-exposure variables. Multiple robustness is appealing because it only requires a subset of working models to be correct for consistency; furthermore, the analyst need not know which subset of working models is in fact correct to report valid inferences. Finally, a novel semiparametric sensitivity analysis technique is developed for each of these models, to assess the impact on inference, of a violation of the assumption of ignorability of the mediator.
Resumo:
Fuel Cells are a promising alternative energy technology. One of the biggest problems that exists in fuel cell is that of water management. A better understanding of wettability characteristics in the fuel cells is needed to alleviate the problem of water management. Contact angle data on gas diffusion layers (GDL) of the fuel cells can be used to characterize the wettability of GDL in fuel cells. A contact angle measurement program has been developed to measure the contact angle of sessile drops from drop images. Digitization of drop images induces pixel errors in the contact angle measurement process. The resulting uncertainty in contact angle measurement has been analyzed. An experimental apparatus has been developed for contact angle measurements at different temperature, with the feature to measure advancing and receding contact angles on gas diffusion layers of fuel cells.
Resumo:
In rapidly evolving domains such as Computer Assisted Orthopaedic Surgery (CAOS) emphasis is often put first on innovation and new functionality, rather than in developing the common infrastructure needed to support integration and reuse of these innovations. In fact, developing such an infrastructure is often considered to be a high-risk venture given the volatility of such a domain. We present CompAS, a method that exploits the very evolution of innovations in the domain to carry out the necessary quantitative and qualitative commonality and variability analysis, especially in the case of scarce system documentation. We show how our technique applies to the CAOS domain by using conference proceedings as a key source of information about the evolution of features in CAOS systems over a period of several years. We detect and classify evolution patterns to determine functional commonality and variability. We also identify non-functional requirements to help capture domain variability. We have validated our approach by evaluating the degree to which representative test systems can be covered by the common and variable features produced by our analysis.
Resumo:
Dimensional alterations of the facial bone wall following tooth extractions in the esthetic zone have a profound effect on treatment outcomes. This prospective study in 39 patients is the first to investigate three-dimensional (3D) alterations of facial bone in the esthetic zone during the initial 8 wks following flapless tooth extraction. A novel 3D analysis was carried out, based on 2 consecutive cone beam computed tomographies (CBCTs). A risk zone for significant bone resorption was identified in central areas, whereas proximal areas yielded only minor changes. Correlation analysis identified a facial bone wall thickness of ≤ 1 mm as a critical factor associated with the extent of bone resorption. Thin-wall phenotypes displayed pronounced vertical bone resorption, with a median bone loss of 7.5 mm, as compared with thick-wall phenotypes, which decreased by only 1.1 mm. For the first time, 3D analysis has allowed for documentation of dimensional alterations of the facial bone wall in the esthetic zone of humans following extraction. It also characterized a risk zone prone to pronounced bone resorption in thin-wall phenotypes. Vertical bone loss was 3.5 times more severe than findings reported in the existing literature.
Resumo:
CONTEXT The necessity of specific intervention components for the successful treatment of patients with posttraumatic stress disorder is the subject of controversy. OBJECTIVE To investigate the complexity of clinical problems as a moderator of relative effects between specific and nonspecific psychological interventions. METHODS We included 18 randomized controlled trials, directly comparing specific and nonspecific psychological interventions. We conducted moderator analyses, including the complexity of clinical problems as predictor. RESULTS Our results have confirmed the moderate superiority of specific over nonspecific psychological interventions; however, the superiority was small in studies with complex clinical problems and large in studies with noncomplex clinical problems. CONCLUSIONS For patients with complex clinical problems, our results suggest that particular nonspecific psychological interventions may be offered as an alternative to specific psychological interventions. In contrast, for patients with noncomplex clinical problems, specific psychological interventions are the best treatment option.
Resumo:
In 2010 more than 600 radiocarbon samples were measured with the gas ion source at the MIni CArbon DAting System (MICADAS) at ETH Zurich and the number of measurements is rising quickly. While most samples contain less than 50 mu g C at present, the gas ion source is attractive as well for larger samples because the time-consuming graphitization is omitted. Additionally, modern samples are now measured down to 5 per-mill counting statistics in less than 30 min with the recently improved gas ion source. In the versatile gas handling system, a stepping-motor-driven syringe presses a mixture of helium and sample CO2 into the gas ion source, allowing continuous and stable measurements of different kinds of samples. CO2 can be provided in four different ways to the versatile gas interface. As a primary method. CO2 is delivered in glass or quartz ampoules. In this case, the CO2 is released in an automated ampoule cracker with 8 positions for individual samples. Secondly, OX-1 and blank gas in helium can be provided to the syringe by directly connecting gas bottles to the gas interface at the stage of the cracker. Thirdly, solid samples can be combusted in an elemental analyzer or in a thermo-optical OC/EC aerosol analyzer where the produced CO2 is transferred to the syringe via a zeolite trap for gas concentration. As a fourth method, CO2 is released from carbonates with phosphoric acid in septum-sealed vials and loaded onto the same trap used for the elemental analyzer. All four methods allow complete automation of the measurement, even though minor user input is presently still required. Details on the setup, versatility and applications of the gas handling system are given. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Recent studies indicate that polymorphic genetic markers are potentially helpful in resolving genealogical relationships among individuals in a natural population. Genetic data provide opportunities for paternity exclusion when genotypic incompatibilities are observed among individuals, and the present investigation examines the resolving power of genetic markers in unambiguous positive determination of paternity. Under the assumption that the mother for each offspring in a population is unambiguously known, an analytical expression for the fraction of males excluded from paternity is derived for the case where males and females may be derived from two different gene pools. This theoretical formulation can also be used to predict the fraction of births for each of which all but one male can be excluded from paternity. We show that even when the average probability of exclusion approaches unity, a substantial fraction of births yield equivocal mother-father-offspring determinations. The number of loci needed to increase the frequency of unambiguous determinations to a high level is beyond the scope of current electrophoretic studies in most species. Applications of this theory to electrophoretic data on Chamaelirium luteum (L.) shows that in 2255 offspring derived from 273 males and 70 females, only 57 triplets could be unequivocally determined with eight polymorphic protein loci, even though the average combined exclusionary power of these loci was 73%. The distribution of potentially compatible male parents, based on multilocus genotypes, was reasonably well predicted from the allele frequency data available for these loci. We demonstrate that genetic paternity analysis in natural populations cannot be reliably based on exclusionary principles alone. In order to measure the reproductive contributions of individuals in natural populations, more elaborate likelihood principles must be deployed.
Territorial Cohesion through Spatial Policies: An Analysis with Cultural Theory and Clumsy Solutions
Resumo:
The European Territorial Cohesion Policy has been the subject of numerous debates in recent years. Most contributions focus on understanding the term itself and figuring out what is behind it, or arguing for or against a stronger formal competence of the European Union in this field. This article will leave out these aspects and pay attention to (undefined and legally non-binding) conceptual elements of territorial cohesion, focusing on the challenge of linking it within spatial policies and organising the relations. Therefore, the theoretical approach of Cultural Theory and its concept of clumsy solution are applied to overcome the dilemma of typical dichotomies by adding a third and a fourth (but not a fifth) perspective. In doing so, normative contradictions between different rational approaches can be revealed, explained and approached with the concept of ‘clumsy solutions’. This contribution aims at discussing how this theoretical approach helps us explain and frame a coalition between the Territorial Cohesion Policy and spatial policies. This approach contributes to finding the best way of linking and organising policies, although the solution might be clumsy according to the different rationalities involved.