585 resultados para ammonossidazione, etanolo, acetonitrile
Resumo:
3-Picoline-N-oxide (3-PicNO) complexes of rare-earth bromides of the formulaMBr3(3-PicNO)8–n·nH2O wheren=0 forM=La, Pr, Nd, Sm Tb or Y andn=2 forM=Ho or Yb have been prepared. Infrared and proton NMR studies indicate that the coordination of the ligand is through oxygen. Conductance data in acetonitrile suggest that two bromide ions are coordinated to the metal ion. Proton NMR studies suggest a bicapped dodecahedral arrangement of the ligands around the metal ion in solution for Pr(III), Nd(III) and Tb(III) complexes.
Resumo:
This paper deals with studies on the dilute solution properties of methyl methacrylate�acrylonitrile copolymer of 0.289 mole fraction (mf) of acrylonitrile composition. Mark�Houwink parameters for this copolymer have been evaluated in acetonitrile (MeCN), 2-butanone (MEK), dimethylformamide (DMF) and γ-butyrolactone (γ-BL). The solvent power is found to be in the order of MEK < MeCN < DMF < γ-BL at 30°C. Herein, probably for the first time, the steric factor for the copolymer is found to be lower than that for the parent homopolymers and the excess interaction parameter, �AB is found to be negative. This probably suggests that the units are compatible to each other.
Resumo:
The photochemical and redox properties of two newly synthesized tetrahydroquinoxaline-based squaraine dyes (SQ) are investigated Using femto- and nanosecond laser flash photolysis, pulse radiolysis, and cyclic voltammetry. In acetonitrile and dichloromethane, these squaraines exist its monomers in the zwitterionic form (lambda(max) approximate to 715 nm, epsilon(max) approximate to 1.66 x 10(5) M-1 cm(-1) in acetonitrile). Their excited sin-let states ((1)SQ*) exhibit a broad absorption hand at 480 nm, with singlet lifetimes of 44 and 123 ps for the two dyes. Both squaraines exhibit poor intersystem crossing efficiency (Phi(ISC) < 0.001). Their excited triplet states ((3)SQ*), however, Ire efficiently generated by triplet-triplet energy transfer Using triplet excited 9,10-dibromoanthracene. The excited triplet states of the squaraines dyes exhibit it broad absorption hand at ca. 560 nm (epsilon(triplet) approximate to 4.2 x 10(4) M-1 cm(-1)) and undergo deactivation via triplet-triplet annihilation and ground-state quenching processes. The oxidized forms of the investigated squaraines (SQ(center dot+)) exhibit absorption maxima at 510 and 610 nm.
Resumo:
A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an ``end-off'' compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.
Resumo:
A new dinuclear nickel(II) complex, [Ni-2(LH2)(H2O)(2)(OH)(NO3)](NO3)(3) (1), of an "end-off" compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.
Resumo:
A method for the volumetric determination of tetraalkyl thiuram disulphide is developed. It is based on its reaction with potassium cyanide in aqueous acetonitrile medium, when the corresponding tetraalkyl thiuram monosulphide and thiocyanate are formed. The former is removed by extraction with benzene and the latter converted into cyanogen bromide, which is estimated iodometrically.
Resumo:
Dimethyl sulphoxide (DMSO) and dimethyl formamide (DMF) complexes of Mn(III) perchlorate have been prepared and their conductivity, magnetic susceptibility and i.r. and electronic spectra studied. The complexes behave as uni-trivalent electrolytes in acetonitrile. Their magnetic moments of 5·1 B.M. show them to be of high spin type. Infra-red spectra show that oxygen is the donor atom in both complexes. The spin allowed electronic transition for d4 system, around 20,000 cm−1, ascribable to the 5Eg → 5T2g transition, suggests an octahedral configuration for these complexes
Resumo:
Dimethyl sulphoxide complexes of lanthanide and yttrium nitrates of the general formula M(DMSO)n(NO3)3 where M = La, Ce, Pr, Nd, Sm or Gd; n = 4 and M = Y, Ho or Yb; n = 3 have been isolated and characterized. The i.r. data besides excluding the presence of D3h nitrate, reveal co-ordination through the oxygen atom of the dimethyl sulphoxide. The complexes are monomeric in acetonitrile. Molecular conductance data in acetone, acetonitrile, dimethyl formamide and dimethyl sulphoxide suggest a co-ordination number of eight for the lighter lanthanides and seven for yttrium and the heavier lanthanides.
Resumo:
Monothiobenzoate (MTB) (Chemical Equation Presented) complexes with the molecular formulas Cr(MTB)3, [Ni(MTB)2]n, [Zn(MTB)2]n, [Cd(MTB)2]n, [Hg(MTB)2]n, [Cu(MTB)]n, and [Ag(MTB)]n have been prepared and studied. All the complexes are nonionic in acetonitrile. Only the chromium complex is soluble in nitrobenzene and found to be monomeric cryoscopically. The thiobenzoate ligand appears to be asymmetrically chelated in Cr(III) and Cd(II) complexes, with stronger oxygen and sulfur coordination, respectively, while practically symmetrically coordinated in Ni(II) and Zn(II) complexes. These four complexes are assigned distorted octahedral structures around the metal ion. The coordination in Hg(II), Cu(I), and Ag(I) complexes is mainly through sulfur indicating the monodentate nature of the thiobenzoate ligand in these complexes. The coordination of monothiobenzoate ion in the complexes has been rationalized in terms of "hard" and "soft" acid-base concept.
Resumo:
It was found that ceric oxalate is an intermediate product in the oxidation of oxalic acid by ammonium hexanitrato cerate in solvents such as acetonitrile, and a mixture of acetonitrile and glacial acetic acid. Conditions for the formation of ceric oxalate and its decomposition into carbon dioxide and cerous oxalate have been studied. An analytical method for the estimation of oxalic acid in non-aqueous media has been evolved based on this reaction.
Resumo:
The time dependent response of a polar solvent to a changing charge distribution is studied in solvation dynamics. The change in the energy of the solute is measured by a time domain Stokes shift in the fluorescence spectrum of the solute. Alternatively, one can use sophisticated non-linear optical spectroscopic techniques to measure the energy fluctuation of the solute at equilibrium. In both methods, the measured dynamic response is expressed by the normalized solvation time correlation function, S(t). The latter is found to exhibit uniquefeatures reflecting both the static and dynamic characteristics of each solvent. For water, S(t) consists of a dominant sub-50 fs ultrafast component, followed by a multi-exponential decay. Acetonitrile exhibitsa sub-100 fs ultrafast component, followed by an exponential decay. Alcohols and amides show features unique to each solvent and solvent series. However, understanding and interpretation of these results have proven to be difficult, and often controversial. Theoretical studiesand computer simulations have greatly facilitated the understanding ofS(t) in simple systems. Recently solvation dynamics has been used extensively to explore dynamics of complex systems, like micelles and reverse micelles, protein and DNA hydration layers, sol-gel mixtures and polymers. In each case one observes rich dynamical features, characterized again by multi-exponential decays but the initial and final time constants are now widely separated. In this tutorial review, we discuss the difficulties in interpreting the origin of the observed behaviour in complex systems.
Resumo:
The reaction between ascorbic acid and ammonium hexa nitrato cerate was studied potentiometrically in the mixed solvent glacial acetic acid acetonitrile medium. It was found that one mole of ascorbic acid consumes four equivalents of cerate in non-aqueous medium. This reaction can be made use of to estimate potentiometrically ascorbic acid with ammonium nitrato cerate in non-aqueous media, using either glass or antimony as reference electrode and platinum as indicator electrode.
Resumo:
Thorium(IV) is known to form high coordination-number complexes. An attempt has therefore been made to determine the effect of anions on the coordination complexes of diphenyl sulphoxide (DPSO) with thorium(IV). The complexes formed have the formulae [Th(DPSO)6](ClO4)4, [Th(DPSO)4Cl4], [Th(DPSO)4Br4], [Th(DPSO)6I2]I2, [Th(DPSO)4(NCS)4]and [Th(DPSO)3(NO3)4]. In all the complexes, DPSO is coordinated to the metal ion through its oxygen. The electrical conductances in nitrobenzene and in nitromethane, and ebullioscopic molecular weights in acetonitrile, show that the perchlorate and iodide complexes behave as 1:4 and 1:2 electrolytes, respectively; while the other complexes are monomeric and non-electrolytes. The infrared spectra of the solid complexes indicate the ionic nature of the perchlorate, the bidentate nature of the nitrate and the coordination of the thiocyanate through its nitrogen. [Th(DPSO)4Cl4], [Th(DPSO)4Br4]and [Th-(DPSO)3 (NO3)4]decompose endothermically while [Th(DPSO)6](ClO4)4 and [Th(DPSO)4(NCS)4]decompose exothermically, both in air and in nitrogen. The perchlorate complex has octahedral symmetry around the thorium, the halo- and the thiocyanato complexes are 8-coordinate, probably with square antiprismatic structures, while the nitrate complex is 11-coordinate
Resumo:
Ring-chain tautomeric equilibria of o-benzoylbenzamides in 95% ethanol, chloroform, dioxan, and acetonitrile have been estimated using u.v. spectroscopy. Unlike the case of acids, solvent polarity has only a small effect. In ethanol the cyclic form is favoured. Electron-withdrawing groups in the amide-bearing ring disfavour the cyclic form. Substitution of methyl, ethyl, and phenyl groups on the nitrogen atom of the amide function results in increase of the proportion of the cyclic form in the first two cases and decrease in the last.
Resumo:
Iron(II) complexes of 1-phenyl-2,3-dimethyl-5-pyrazolone (antipyrine, Apy) and pyridine N-oxide (PyO), having the formulae [Fe(Apy)6](ClO4)2, Fe(Apy)2Cl2, Fe(Apy)2Br2, Fe(Apy)4I2, [Fe(PyO)3Cl3]2 . 2H2O, [Fe(PyO)Cl2 . 2H2O]2, [Fe(PyO)3Br2]2 and [Fe(PyO)6]I2 have been prepared and characterized. [Fe(Apy)6](ClO4)2 in nitrobenzene and [Fe(PyO)6]I2 in acetonitrile behave as 1:2 electrolytes; Fe(Apy)4I2 shows considerable dissociation while Fe(Apy)2Cl2 and Fe(Apy)2Br2 are non-electrolytes and monomeric in nitrobenzene. [Fe(PyO)3Cl2]2 . 2H2O and [Fe(PyO)3Br2]2 in nitrobenzene and [Fe(PyO)Cl2 . 2H2O]2 in acetonitrile behave as non-electrolytes. All the complexes are spin-free. The i.r. spectra show that the oxygens of the CO and NO groups are the donors in the Apy and PyO complexes. A large decrease in the NO stretching frequency in [Fe(PyO)Cl2. 2H2O]2 suggests PyO acts as a bridge forming a binuclear complex. The chloro and the bromo complexes of Apy have been assigned pseudo tetrahedral structures while the rest of the complexes have octahedral or near octahedral configurations around the iron(II) on the basis of the magnetic moments and the electronic transitions.