975 resultados para all terrain vehicle
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.
Resumo:
The Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. In this study the effects of 213,561 electric vehicles on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is investigated. A model of Ireland’s electricity market in 2020 is developed using the power systems market model called PLEXOS for power systems. The amount of CO2 emissions associated with charging the EVs and the impacts with respect to Ireland’s target for renewable energy in transport is also quantified. A single generation portfolio and two different charging scenarios, arising from a peak and off-peak charging profile are considered. Results from the study confirm that offpeak charging is more beneficial than peak charging and that charging EVs will contribute 1.45% energy supply to the 10% renewable energy in transport target. The net CO2 reductions are 147 and 210 kt CO2 respectively.
Resumo:
Multi-vehicle cooperative formation control problem is an important and typical topic of research on multi-agent system. This paper presents a formation stability conjecture to conceive a new methodology for solving the decentralised multi-vehicle formation control problem. It employs the “extension-decomposition-aggregation” scheme to transform the complex multi-agent control problem into a group of sub-problems which is able to be solved conveniently. Based on this methodology, it is proved that if all the individual augmented subsystems can be stabilised by using any approach, the overall formation system is not only asymptotically but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. Simulation study on 6-DOF aerial vehicles (Aerosonde UAVs) has been performed to verify the achieved formation stability result. The proposed multi-vehicle formation control strategy can be conveniently extended to other cooperative control problems of multi-agent systems.
Resumo:
Electric vehicles (EV) are proposed as a measure to reduce greenhouse gas emissions in transport and support increased wind power penetration across modern power systems. Optimal benefits can only be achieved, if EVs are deployed effectively, so that the exhaust emissions are not substituted by additional emissions in the electricity sector, which can be implemented using Smart Grid controls. This research presents the results of an EV roll-out in the all island grid (AIG) in Ireland using the long term generation expansion planning model called the Wien Automatic System Planning IV (WASP-IV) tool to measure carbon dioxide emissions and changes in total energy. The model incorporates all generators and operational requirements while meeting environmental emissions, fuel availability and generator operational and maintenance constraints to optimize economic dispatch and unit commitment power dispatch. In the study three distinct scenarios are investigated base case, peak and off-peak charging to simulate the impacts of EV’s in the AIG up to 2025.
Resumo:
The European Union has set a target for 10% renewable energy in transport by 2020 to be met using biofuels and electric vehicles. In the case of biofuels, the biofuel must achieve greenhouse gas savings of 35% relative to the fossil fuel replaced. For biofuels, greenhouse gas savings can be calculated using life cycle analysis or the European Union default values. In contrast, all electricity used in transport is considered to be the same, regardless of the source or the type of electric vehicle. However, the choice of the electric vehicle and electricity source will have a major impact on the greenhouse gas saving. In this paper the initial findings of a well-to-wheel analysis of electric vehicle deployment in Northern Ireland are presented. The key finding indicates that electric vehicles require least amount of energy per mile on a well-to-wheel basis, consume the fewest resources, even accommodating inefficient fuel production, in comparison to standard internal combustion engine and hybrid vehicles.
Resumo:
Highway structures such as bridges are subject to continuous degradation primarily due to ageing and environmental factors. A rational transport policy requires the monitoring of this transport infrastructure to provide adequate maintenance and guarantee the required levels of transport service and safety. In Europe, this is now a legal requirement - a European Directive requires all member states of the European Union to implement a Bridge Management System. However, the process is expensive, requiring the installation of sensing equipment and data acquisition electronics on the bridge. This paper investigates the use of an instrumented vehicle fitted with accelerometers on its axles to monitor the dynamic behaviour of bridges as an indicator of its structural condition. This approach eliminates the need for any on-site installation of measurement equipment. A simplified half-car vehicle-bridge interaction model is used in theoretical simulations to test the possibility of extracting the dynamic parameters of the bridge from the spectra of the vehicle accelerations. The effect of vehicle speed, vehicle mass and bridge span length on the detection of the bridge dynamic parameters are investigated. The algorithm is highly sensitive to the condition of the road profile and simulations are carried out for both smooth and rough profiles
Resumo:
Nos últimos anos, o número de vítimas de acidentes de tráfego por milhões de habitantes em Portugal tem sido mais elevado do que a média da União Europeia. Ao nível nacional torna-se premente uma melhor compreensão dos dados de acidentes e sobre o efeito do veículo na gravidade do mesmo. O objetivo principal desta investigação consistiu no desenvolvimento de modelos de previsão da gravidade do acidente, para o caso de um único veículo envolvido e para caso de uma colisão, envolvendo dois veículos. Além disso, esta investigação compreendeu o desenvolvimento de uma análise integrada para avaliar o desempenho do veículo em termos de segurança, eficiência energética e emissões de poluentes. Os dados de acidentes foram recolhidos junto da Guarda Nacional Republicana Portuguesa, na área metropolitana do Porto para o período de 2006-2010. Um total de 1,374 acidentes foram recolhidos, 500 acidentes envolvendo um único veículo e 874 colisões. Para a análise da segurança, foram utilizados modelos de regressão logística. Para os acidentes envolvendo um único veículo, o efeito das características do veículo no risco de feridos graves e/ou mortos (variável resposta definida como binária) foi explorado. Para as colisões envolvendo dois veículos foram criadas duas variáveis binárias adicionais: uma para prever a probabilidade de feridos graves e/ou mortos num dos veículos (designado como veículo V1) e outra para prever a probabilidade de feridos graves e/ou mortos no outro veículo envolvido (designado como veículo V2). Para ultrapassar o desafio e limitações relativas ao tamanho da amostra e desigualdade entre os casos analisados (apenas 5.1% de acidentes graves), foi desenvolvida uma metodologia com base numa estratégia de reamostragem e foram utilizadas 10 amostras geradas de forma aleatória e estratificada para a validação dos modelos. Durante a fase de modelação, foi analisado o efeito das características do veículo, como o peso, a cilindrada, a distância entre eixos e a idade do veículo. Para a análise do consumo de combustível e das emissões, foi aplicada a metodologia CORINAIR. Posteriormente, os dados das emissões foram modelados de forma a serem ajustados a regressões lineares. Finalmente, foi desenvolvido um indicador de análise integrada (denominado “SEG”) que proporciona um método de classificação para avaliar o desempenho do veículo ao nível da segurança rodoviária, consumos e emissões de poluentes.Face aos resultados obtidos, para os acidentes envolvendo um único veículo, o modelo de previsão do risco de gravidade identificou a idade e a cilindrada do veículo como estatisticamente significativas para a previsão de ocorrência de feridos graves e/ou mortos, ao nível de significância de 5%. A exatidão do modelo foi de 58.0% (desvio padrão (D.P.) 3.1). Para as colisões envolvendo dois veículos, ao prever a probabilidade de feridos graves e/ou mortos no veículo V1, a cilindrada do veículo oposto (veículo V2) aumentou o risco para os ocupantes do veículo V1, ao nível de significância de 10%. O modelo para prever o risco de gravidade no veículo V1 revelou um bom desempenho, com uma exatidão de 61.2% (D.P. 2.4). Ao prever a probabilidade de feridos graves e/ou mortos no veículo V2, a cilindrada do veículo V1 aumentou o risco para os ocupantes do veículo V2, ao nível de significância de 5%. O modelo para prever o risco de gravidade no veículo V2 também revelou um desempenho satisfatório, com uma exatidão de 40.5% (D.P. 2.1). Os resultados do indicador integrado SEG revelaram que os veículos mais recentes apresentam uma melhor classificação para os três domínios: segurança, consumo e emissões. Esta investigação demonstra que não existe conflito entre a componente da segurança, a eficiência energética e emissões relativamente ao desempenho dos veículos.
Resumo:
Geostatistics has been successfully used to analyze and characterize the spatial variability of environmental properties. Besides giving estimated values at unsampled locations, it provides a measure of the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. In this work universal block kriging is novelty used to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfall monitoring campaign, with the aim of distinguishing the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of the discharge and estimating dilution. The results demonstrate that geostatistical methodology can provide good estimates of the dispersion of effluents that are very valuable in assessing the environmental impact and managing sea outfalls. Moreover, since accurate measurements of the plume’s dilution are rare, these studies might be very helpful in the future to validate dispersion models.
Resumo:
Les projets interdisciplinaires constituent rarement le terrain des études sur le processus de conception en design. Les théories générales du design, en tentant de définir ce qui est commun à toutes les disciplines du design, ont davantage étudié les cas typiques que les cas atypiques. Or, nous croyons qu’il existe dans les projets interdisciplinaires une négociation argumentative et une ouverture vers l’autre, propice à l’analyse du processus de conception en design. Pour réaliser l’étude de ce processus, la stratégie empruntée a été la «recherche-projet» qui propose une participation active sur le terrain. À l’intérieur de cette stratégie méthodologique, nous avons réalisé l’étude de cas d’un projet hybride, une signalétique identitaire destinée à marquer les écocentres montréalais et orienter leurs usagers. Comme plusieurs autres pratiques du design, la complexité des projets interdisciplinaires demande l’apport de plusieurs acteurs dans le processus. Ces personnes conçoivent le projet à travers des représentations visuelles et des échanges verbaux, nous avons choisi de faire porter notre étude principalement sur le second. Pour ce faire, nous avons choisi comme cadre théorique le Traité de l’argumentation de Chaïm Perelman et Lucie Olbrechts-Tyteca en nous intéressant plus spécifiquement aux concepts d’«accord» et d’«auditoire». Parce que le véhicule de l’action en design est la notion de «projet», l’Anthropologie du projet de Jean-Pierre Boutinet sera notre guide à travers cette conduite. L’objet de recherche de ce mémoire sera donc le processus de conception en design qui sera étudié à travers le regard de l’argumentation. L’argumentation s'est révélée la clé du problème que posent les jugements de valeur, commune à toutes les disciplines du design. Qu’est-ce qu’un «bon» projet réalisé? Est-il possible de répondre à cette question, sans tomber dans un cadre argumentatif, sans devoir révéler les arguments qui nous permettent de croire vraisemblable une telle proposition? C’est en mettant en lien la théorie du projet en design et la théorie de l’argumentation que nous avons éclairé la pratique du designer, sa relation à ses collègues et ultimement avec lui-même. L’argumentation s’est avérée un outil permettant la construction de la réalité dans le projet interdisciplinaire.
Resumo:
Le nombre important de véhicules sur le réseau routier peut entraîner des problèmes d'encombrement et de sécurité. Les usagers des réseaux routiers qui nous intéressent sont les camionneurs qui transportent des marchandises, pouvant rouler avec des véhicules non conformes ou emprunter des routes interdites pour gagner du temps. Le transport de matières dangereuses est réglementé et certains lieux, surtout les ponts et les tunnels, leur sont interdits d'accès. Pour aider à faire appliquer les lois en vigueur, il existe un système de contrôles routiers composé de structures fixes et de patrouilles mobiles. Le déploiement stratégique de ces ressources de contrôle mise sur la connaissance du comportement des camionneurs que nous allons étudier à travers l'analyse de leurs choix de routes. Un problème de choix de routes peut se modéliser en utilisant la théorie des choix discrets, elle-même fondée sur la théorie de l'utilité aléatoire. Traiter ce type de problème avec cette théorie est complexe. Les modèles que nous utiliserons sont tels, que nous serons amenés à faire face à des problèmes de corrélation, puisque plusieurs routes partagent probablement des arcs. De plus, puisque nous travaillons sur le réseau routier du Québec, le choix de routes peut se faire parmi un ensemble de routes dont le nombre est potentiellement infini si on considère celles ayant des boucles. Enfin, l'étude des choix faits par un humain n'est pas triviale. Avec l'aide du modèle de choix de routes retenu, nous pourrons calculer une expression de la probabilité qu'une route soit prise par le camionneur. Nous avons abordé cette étude du comportement en commençant par un travail de description des données collectées. Le questionnaire utilisé par les contrôleurs permet de collecter des données concernant les camionneurs, leurs véhicules et le lieu du contrôle. La description des données observées est une étape essentielle, car elle permet de présenter clairement à un analyste potentiel ce qui est accessible pour étudier les comportements des camionneurs. Les données observées lors d'un contrôle constitueront ce que nous appellerons une observation. Avec les attributs du réseau, il sera possible de modéliser le réseau routier du Québec. Une sélection de certains attributs permettra de spécifier la fonction d'utilité et par conséquent la fonction permettant de calculer les probabilités de choix de routes par un camionneur. Il devient alors possible d'étudier un comportement en se basant sur des observations. Celles provenant du terrain ne nous donnent pas suffisamment d'information actuellement et même en spécifiant bien un modèle, l'estimation des paramètres n'est pas possible. Cette dernière est basée sur la méthode du maximum de vraisemblance. Nous avons l'outil, mais il nous manque la matière première que sont les observations, pour continuer l'étude. L'idée est de poursuivre avec des observations de synthèse. Nous ferons des estimations avec des observations complètes puis, pour se rapprocher des conditions réelles, nous continuerons avec des observations partielles. Ceci constitue d'ailleurs un défi majeur. Nous proposons pour ces dernières, de nous servir des résultats des travaux de (Bierlaire et Frejinger, 2008) en les combinant avec ceux de (Fosgerau, Frejinger et Karlström, 2013). Bien qu'elles soient de nature synthétiques, les observations que nous utilisons nous mèneront à des résultats tels, que nous serons en mesure de fournir une proposition concrète qui pourrait aider à optimiser les décisions des responsables des contrôles routiers. En effet, nous avons réussi à estimer, sur le réseau réel du Québec, avec un seuil de signification de 0,05 les valeurs des paramètres d'un modèle de choix de routes discrets, même lorsque les observations sont partielles. Ces résultats donneront lieu à des recommandations sur les changements à faire dans le questionnaire permettant de collecter des données.
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping
Resumo:
The challenge of reducing carbon emission and achieving emission target until 2050, has become a key development strategy of energy distribution for each country. The automotive industries, as the important portion of implementing energy requirements, are making some related researches to meet energy requirements and customer requirements. For modern energy requirements, it should be clean, green and renewable. For customer requirements, it should be economic, reliable and long life time. Regarding increasing requirements on the market and enlarged customer quantity, EVs and PHEV are more and more important for automotive manufactures. Normally for EVs and PHEV there are two important key parts, which are battery package and power electronics composing of critical components. A rechargeable battery is a quite important element for achieving cost competitiveness, which is mainly used to story energy and provide continue energy to drive an electric motor. In order to recharge battery and drive the electric motor, power electronics group is an essential bridge to convert different energy types for both of them. In modern power electronics there are many different topologies such as non-isolated and isolated power converters which can be used to implement for charging battery. One of most used converter topology is multiphase interleaved power converter, pri- marily due to its prominent advantages, which is frequently employed to obtain optimal dynamic response, high effciency and compact converter size. Concerning its usage, many detailed investigations regarding topology, control strategy and devices have been done. In this thesis, the core research is to investigate some branched contents in term of issues analysis and optimization approaches of building magnetic component. This work starts with an introduction of reasons of developing EVs and PEHV and an overview of different possible topologies regarding specific application requirements. Because of less components, high reliability, high effciency and also no special safety requirement, non-isolated multiphase interleaved converter is selected as the basic research topology of founded W-charge project for investigating its advantages and potential branches on using optimized magnetic components. Following, all those proposed aspects and approaches are investigated and analyzed in details in order to verify constrains and advantages through using integrated coupled inductors. Furthermore, digital controller concept and a novel tapped-inductor topology is proposed for multiphase power converter and electric vehicle application.
Resumo:
This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors
Resumo:
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed. After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography. Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances. Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.
Resumo:
This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.