915 resultados para algoritmi non evolutivi pattern recognition analisi dati avanzata metodi matematici intelligenza artificiale non evolutive algorithms artificial intelligence
Resumo:
Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.
Resumo:
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Resumo:
Intrusion detection systems that make use of artificial intelligence techniques in order to improve effectiveness have been actively pursued in the last decade. Neural networks and Support Vector Machines have been also extensively applied to this task. However, their complexity to learn new attacks has become very expensive, making them inviable for a real time retraining. In this research, we introduce a new pattern classifier named Optimum-Path Forest (OPF) to this task, which has demonstrated to be similar to the state-of-the-art pattern recognition techniques, but extremely more efficient for training patterns. Experiments on public datasets showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, as well as allow the algorithm to learn new attacks faster than the other techniques. © 2011 IEEE.
Resumo:
Nella prima parte si analizza il metodo dell'entropia delle parole in un testo per recuperare quelle più rilevanti in base alla distribuzione delle stesse all'interno dell'opera. Nella seconda parte viene studiata l'analisi della semantica latente e le sue basi statistiche, algebriche e analitiche. Infine vengono effettuati degli esperimenti con l'utilizzo del software InfomapNLP sulla Divina Commedia.
Resumo:
Questo elaborato concerne la revisione della letteratura scientifica relativa alla teorizzazione e realizzazione tecnologica del memristor, un nuovo componente elettronico teorizzato nel 1971 e realizzato solo nel 2008 nei laboratori della HP (Hewlett Packard, Palo Alto, California). Dopo una descrizione in termini matematici della teoria fisica alla base del dispositivo e del suo funzionamento, viene descritta la sua realizzazione tecnologica e il corrispettivo modello teorico. Succesivamente il lavoro discute la possibile analogia tra il funzionamento del memristor ed il funzionamento di neuroni e sinapsi biologiche all'interno del Sistema Nervoso Centrale. Infine, vengono descritte le architetture recentemente proposte per l'implementazione di reti neurali artificiali fondate su un sistema computazionale parallelo e realizzate mediante sistemi ibridi transistors/memristors.
Resumo:
PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.
Resumo:
A nonlinear viscoelastic image registration algorithm based on the demons paradigm and incorporating inverse consistent constraint (ICC) is implemented. An inverse consistent and symmetric cost function using mutual information (MI) as a similarity measure is employed. The cost function also includes regularization of transformation and inverse consistent error (ICE). The uncertainties in balancing various terms in the cost function are avoided by alternatively minimizing the similarity measure, the regularization of the transformation, and the ICE terms. The diffeomorphism of registration for preventing folding and/or tearing in the deformation is achieved by the composition scheme. The quality of image registration is first demonstrated by constructing brain atlas from 20 adult brains (age range 30-60). It is shown that with this registration technique: (1) the Jacobian determinant is positive for all voxels and (2) the average ICE is around 0.004 voxels with a maximum value below 0.1 voxels. Further, the deformation-based segmentation on Internet Brain Segmentation Repository, a publicly available dataset, has yielded high Dice similarity index (DSI) of 94.7% for the cerebellum and 74.7% for the hippocampus, attesting to the quality of our registration method.
Resumo:
L'informazione è alla base della conoscenza umana. Senza, non si potrebbe sapere nulla di ciò che esiste, di ciò che è stato o di quello che potrebbe accadere. Ogni giorno si assimilano moltissime informazioni, che vengono registrate nella propria memoria per essere riutilizzate all'occorrenza. Ne esistono di vari generi, ma il loro insieme va a formare quella che è la cultura, educazione, tradizione e storia dell'individuo. Per questo motivo è importante la loro diffusione e salvaguardia, impedendone la perdita che costerebbe la dipartita di una parte di sé, del proprio passato o del proprio futuro. Al giorno d'oggi le informazioni possono essere acquisite tramite persone, libri, riviste, giornali, la televisione, il Web. I canali di trasmissione sono molti, alcuni più efficaci di altri. Tra questi, internet è diventato un potente strumento di comunicazione, il quale consente l'interazione tra chi naviga nel Web (ossia gli utenti) e una partecipazione attiva alla diffusione di informazioni. Nello specifico, esistono siti (chiamati di microblogging) in cui sono gli stessi utenti a decidere se un'informazione possa essere o meno inserita nella propria pagina personale. In questo caso, si è di fronte a una nuova "gestione dell'informazione", che può variare da utente a utente e può defluire in catene di propagazione (percorsi che compiono i dati e le notizie tra i navigatori del Web) dai risvolti spesso incerti. Ma esiste un modello che possa spiegare l'avanzata delle informazioni tra gli utenti? Se fosse possibile capirne la dinamica, si potrebbe venire a conoscenza di quali sono le informazioni più soggette a propagazione, gli utenti che più ne influenzano i percorsi, quante persone ne vengono a conoscenza o il tempo per cui resta attiva un'informazione, descrivendone una sorta di ciclo di vita. E' possibile nel mondo reale trovare delle caratteristiche ricorrenti in queste propagazioni, in modo da poter sviluppare un metodo universale per acquisirne e analizzarne le dinamiche? I siti di microblogging non seguono regole precise, perciò si va incontro a un insieme apparentemente casuale di informazioni che necessitano una chiave di lettura. Quest'ultima è proprio quella che si è cercata, con la speranza di poter sfruttare i risultati ottenuti nell'ipotesi di una futura gestione dell'informazione più consapevole. L'obiettivo della tesi è quello di identificare un modello che mostri con chiarezza quali sono i passaggi da affrontare nella ricerca di una logica di fondo nella gestione delle informazioni in rete.
Resumo:
La frenetica evoluzione sociale e culturale, data dal crescente e continuo bisogno di conoscenza dell’uomo, ha portato oggi a navigare in un oceano sconfinato di dati e informazioni. Esse assumono una propria peculiare importanza, un valore sia dal punto di vista del singolo individuo, sia all’interno di un contesto sociale e di un settore di riferimento specifico e concreto. La conseguente mutazione dell’interazione e della comunicazione a livello economico della società, ha portato a parlare oggi di economia dell’informazione. In un contesto in cui l’informazione rappresenta la risorsa principale per l’attività di crescita e sviluppo economico, è fondamentale possedere la più adeguata strategia organizzativa per la gestione dei dati grezzi. Questo per permetterne un’efficiente memorizzazione, recupero e manipolazione in grado di aumentare il valore dell’organizzazione che ne fa uso. Un’informazione incompleta o non accurata può portare a valutazioni errate o non ottimali. Ecco quindi la necessità di gestire i dati secondo specifici criteri al fine di creare un proprio vantaggio competitivo. La presente rassegna ha lo scopo di analizzare le tecniche di ottimizzazione di accesso alle basi di dati. La loro efficiente implementazione è di fondamentale importanza per il supporto e il corretto funzionamento delle applicazioni che ne fanno uso: devono garantire un comportamento performante in termini di velocità, precisione e accuratezza delle informazioni elaborate. L’attenzione si focalizzerà sulle strutture d’indicizzazione di tipo gerarchico: gli alberi di ricerca. Verranno descritti sia gli alberi su dati ad una dimensione, sia quelli utilizzati nel contesto di ricerche multi dimensionali (come, ad esempio, punti in uno spazio). L’ingente sforzo per implementare strutture di questo tipo ha portato gli sviluppatori a sfruttare i principi di ereditarietà e astrazione della programmazione ad oggetti al fine di ideare un albero generalizzato che inglobasse in sé tutte le principali caratteristiche e funzioni di una struttura di indicizzazione gerarchica, così da aumentarne la riusabilità per i più particolari utilizzi. Da qui la presentazione della struttura GiST: Generalized Search Tree. Concluderà una valutazione dei metodi d’accesso esposti nella dissertazione con un riepilogo dei principali dati relativi ai costi computazionali, vantaggi e svantaggi.
Resumo:
Il termine cloud ha origine dal mondo delle telecomunicazioni quando i provider iniziarono ad utilizzare servizi basati su reti virtuali private (VPN) per la comunicazione dei dati. Il cloud computing ha a che fare con la computazione, il software, l’accesso ai dati e servizi di memorizzazione in modo tale che l’utente finale non abbia idea della posizione fisica dei dati e la configurazione del sistema in cui risiedono. Il cloud computing è un recente trend nel mondo IT che muove la computazione e i dati lontano dai desktop e dai pc portatili portandoli in larghi data centers. La definizione di cloud computing data dal NIST dice che il cloud computing è un modello che permette accesso di rete on-demand a un pool condiviso di risorse computazionali che può essere rapidamente utilizzato e rilasciato con sforzo di gestione ed interazione con il provider del servizio minimi. Con la proliferazione a larga scala di Internet nel mondo le applicazioni ora possono essere distribuite come servizi tramite Internet; come risultato, i costi complessivi di questi servizi vengono abbattuti. L’obbiettivo principale del cloud computing è utilizzare meglio risorse distribuite, combinarle assieme per raggiungere un throughput più elevato e risolvere problemi di computazione su larga scala. Le aziende che si appoggiano ai servizi cloud risparmiano su costi di infrastruttura e mantenimento di risorse computazionali poichè trasferiscono questo aspetto al provider; in questo modo le aziende si possono occupare esclusivamente del business di loro interesse. Mano a mano che il cloud computing diventa più popolare, vengono esposte preoccupazioni riguardo i problemi di sicurezza introdotti con l’utilizzo di questo nuovo modello. Le caratteristiche di questo nuovo modello di deployment differiscono ampiamente da quelle delle architetture tradizionali, e i meccanismi di sicurezza tradizionali risultano inefficienti o inutili. Il cloud computing offre molti benefici ma è anche più vulnerabile a minacce. Ci sono molte sfide e rischi nel cloud computing che aumentano la minaccia della compromissione dei dati. Queste preoccupazioni rendono le aziende restie dall’adoperare soluzioni di cloud computing, rallentandone la diffusione. Negli anni recenti molti sforzi sono andati nella ricerca sulla sicurezza degli ambienti cloud, sulla classificazione delle minacce e sull’analisi di rischio; purtroppo i problemi del cloud sono di vario livello e non esiste una soluzione univoca. Dopo aver presentato una breve introduzione sul cloud computing in generale, l’obiettivo di questo elaborato è quello di fornire una panoramica sulle vulnerabilità principali del modello cloud in base alle sue caratteristiche, per poi effettuare una analisi di rischio dal punto di vista del cliente riguardo l’utilizzo del cloud. In questo modo valutando i rischi e le opportunità un cliente deve decidere se adottare una soluzione di tipo cloud. Alla fine verrà presentato un framework che mira a risolvere un particolare problema, quello del traffico malevolo sulla rete cloud. L’elaborato è strutturato nel modo seguente: nel primo capitolo verrà data una panoramica del cloud computing, evidenziandone caratteristiche, architettura, modelli di servizio, modelli di deployment ed eventuali problemi riguardo il cloud. Nel secondo capitolo verrà data una introduzione alla sicurezza in ambito informatico per poi passare nello specifico alla sicurezza nel modello di cloud computing. Verranno considerate le vulnerabilità derivanti dalle tecnologie e dalle caratteristiche che enucleano il cloud, per poi passare ad una analisi dei rischi. I rischi sono di diversa natura, da quelli prettamente tecnologici a quelli derivanti da questioni legali o amministrative, fino a quelli non specifici al cloud ma che lo riguardano comunque. Per ogni rischio verranno elencati i beni afflitti in caso di attacco e verrà espresso un livello di rischio che va dal basso fino al molto alto. Ogni rischio dovrà essere messo in conto con le opportunità che l’aspetto da cui quel rischio nasce offre. Nell’ultimo capitolo verrà illustrato un framework per la protezione della rete interna del cloud, installando un Intrusion Detection System con pattern recognition e anomaly detection.
Resumo:
I moderni motori a combustione interna diventano sempre più complessi L'introduzione della normativa antinquinamento EURO VI richiederà una significativa riduzione degli inquinanti allo scarico. La maggiore criticità è rappresentata dalla riduzione degli NOx per i motori Diesel da aggiungersi a quelle già in vigore con le precedenti normative. Tipicamente la messa a punto di una nuova motorizzazione prevede una serie di test specifici al banco prova. Il numero sempre maggiore di parametri di controllo della combustione, sorti come conseguenza della maggior complessità meccanica del motore stesso, causa un aumento esponenziale delle prove da eseguire per caratterizzare l'intero sistema. L'obiettivo di questo progetto di dottorato è quello di realizzare un sistema di analisi della combustione in tempo reale in cui siano implementati diversi algoritmi non ancora presenti nelle centraline moderne. Tutto questo facendo particolare attenzione alla scelta dell'hardware su cui implementare gli algoritmi di analisi. Creando una piattaforma di Rapid Control Prototyping (RCP) che sfrutti la maggior parte dei sensori presenti in vettura di serie; che sia in grado di abbreviare i tempi e i costi della sperimentazione sui motopropulsori, riducendo la necessità di effettuare analisi a posteriori, su dati precedentemente acquisiti, a fronte di una maggior quantità di calcoli effettuati in tempo reale. La soluzione proposta garantisce l'aggiornabilità, la possibilità di mantenere al massimo livello tecnologico la piattaforma di calcolo, allontanandone l'obsolescenza e i costi di sostituzione. Questa proprietà si traduce nella necessità di mantenere la compatibilità tra hardware e software di generazioni differenti, rendendo possibile la sostituzione di quei componenti che limitano le prestazioni senza riprogettare il software.
Resumo:
Obiettivo di questa tesi dal titolo “Analisi di tecniche per l’estrazione di informazioni da documenti testuali e non strutturati” è quello di mostrare tecniche e metodologie informatiche che permettano di ricavare informazioni e conoscenza da dati in formato testuale. Gli argomenti trattati includono l'analisi di software per l'estrazione di informazioni, il web semantico, l'importanza dei dati e in particolare i Big Data, Open Data e Linked Data. Si parlerà inoltre di data mining e text mining.
Resumo:
L'esperimento ATLAS, come gli altri esperimenti che operano al Large Hadron Collider, produce Petabytes di dati ogni anno, che devono poi essere archiviati ed elaborati. Inoltre gli esperimenti si sono proposti di rendere accessibili questi dati in tutto il mondo. In risposta a questi bisogni è stato progettato il Worldwide LHC Computing Grid che combina la potenza di calcolo e le capacità di archiviazione di più di 170 siti sparsi in tutto il mondo. Nella maggior parte dei siti del WLCG sono state sviluppate tecnologie per la gestione dello storage, che si occupano anche della gestione delle richieste da parte degli utenti e del trasferimento dei dati. Questi sistemi registrano le proprie attività in logfiles, ricchi di informazioni utili agli operatori per individuare un problema in caso di malfunzionamento del sistema. In previsione di un maggiore flusso di dati nei prossimi anni si sta lavorando per rendere questi siti ancora più affidabili e uno dei possibili modi per farlo è lo sviluppo di un sistema in grado di analizzare i file di log autonomamente e individuare le anomalie che preannunciano un malfunzionamento. Per arrivare a realizzare questo sistema si deve prima individuare il metodo più adatto per l'analisi dei file di log. In questa tesi viene studiato un approccio al problema che utilizza l'intelligenza artificiale per analizzare i logfiles, più nello specifico viene studiato l'approccio che utilizza dell'algoritmo di clustering K-means.