913 resultados para airborne particles
Resumo:
Due to their detrimental effects on human health, scientific interest in ultrafine particles (UFP), has been increasing but available information is far from comprehensive. Children, who represent one of the most susceptible subpopulation, spend the majority of time in schools and homes. Thus, the aim of this study is to (1) assess indoor levels of particle number concentrations (PNC) in ultrafine and fine (20–1000 nm) range at school and home environments and (2) compare indoor respective dose rates for 3- to 5-yr-old children. Indoor particle number concentrations in range of 20–1000 nm were consecutively measured during 56 d at two preschools (S1 and S2) and three homes (H1–H3) situated in Porto, Portugal. At both preschools different indoor microenvironments, such as classrooms and canteens, were evaluated. The results showed that total mean indoor PNC as determined for all indoor microenvironments were significantly higher at S1 than S2. At homes, indoor levels of PNC with means ranging between 1.09 × 104 and 1.24 × 104 particles/cm3 were 10–70% lower than total indoor means of preschools (1.32 × 104 to 1.84 × 104 particles/cm3). Nevertheless, estimated dose rates of particles were 1.3- to 2.1-fold higher at homes than preschools, mainly due to longer period of time spent at home. Daily activity patterns of 3- to 5-yr-old children significantly influenced overall dose rates of particles. Therefore, future studies focusing on health effects of airborne pollutants always need to account for children’s exposures in different microenvironments such as homes, schools, and transportation modes in order to obtain an accurate representation of children overall exposure.
Resumo:
A quantitative assessment of Cloudsat reflectivities and basic ice cloud properties (cloud base, top, and thickness) is conducted in the present study from both airborne and ground-based observations. Airborne observations allow direct comparisons on a limited number of ocean backscatter and cloud samples, whereas the ground-based observations allow statistical comparisons on much longer time series but with some additional assumptions. Direct comparisons of the ocean backscatter and ice cloud reflectivities measured by an airborne cloud radar and Cloudsat during two field experiments indicate that, on average, Cloudsat measures ocean backscatter 0.4 dB higher and ice cloud reflectivities 1 dB higher than the airborne cloud radar. Five ground-based sites have also been used for a statistical evaluation of the Cloudsat reflectivities and basic cloud properties. From these comparisons, it is found that the weighted-mean difference ZCloudsat − ZGround ranges from −0.4 to +0.3 dB when a ±1-h time lag around the Cloudsat overpass is considered. Given the fact that the airborne and ground-based radar calibration accuracy is about 1 dB, it is concluded that the reflectivities of the spaceborne, airborne, and ground-based radars agree within the expected calibration uncertainties of the airborne and ground-based radars. This result shows that the Cloudsat radar does achieve the claimed sensitivity of around −29 dBZ. Finally, an evaluation of the tropical “convective ice” profiles measured by Cloudsat has been carried out over the tropical site in Darwin, Australia. It is shown that these profiles can be used statistically down to approximately 9-km height (or 4 km above the melting layer) without attenuation and multiple scattering corrections over Darwin. It is difficult to estimate if this result is applicable to all types of deep convective storms in the tropics. However, this first study suggests that the Cloudsat profiles in convective ice need to be corrected for attenuation by supercooled liquid water and ice aggregates/graupel particles and multiple scattering prior to their quantitative use.
Resumo:
Holm oak (Quercus ilex), a widespread urban street tree in the Mediterranean region, is widely used as biomonitor of persistent atmospheric pollutants, especially particulate-bound metals. By using lab- and field-based experimental approaches, we compared the leaf-level capacity for particles’ capture and retention between Q. ilex and other common Mediterranean urban trees: Quercus cerris, Platanus × hispanica, Tilia cordata and Olea europaea. All applied methods were effective in quantifying particulate capture and retention, although not univocal in ranking species performances. Distinctive morphological features of leaves led to differences in species’ ability to trap and retain particles of different size classes and to accumulate metals after exposure to traffic in an urban street. Overall, P. × hispanica and T. cordata showed the largest capture potential per unit leaf area for most model particles (Na+ and powder particles), and street-level Cu and Pb, while Q. ilex acted intermediately. After wash-off experiments, P. × hispanica leaves had the greatest retention capacity among the tested species and O. europaea the lowest. We concluded that the Platanus planting could be considered in Mediterranean urban environments due to its efficiency in accumulating and retaining airborne particulates; however, with atmospheric pollution being typically higher in winter, the evergreen Q. ilex represents a better year-round choice to mitigate the impact of airborne particulate pollutants.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Statement of problem Because airborne-particle abrasion is an efficient method of improving the bond at the zirconia-cement interface, understanding its effect on the strength of yttria-stabilized tetragonal zirconia polycrystal is important. Purpose The purpose of this study was to evaluate the effect of the particle size used for airborne-particle abrasion on the flexural strength and phase transformation of a commercially available yttria-stabilized tetragonal zirconia polycrystal ceramic. Material and Methods For both flexural strength (20.0 × 4.0 × 1.2 mm) (n=14) and phase transformation (14.0-mm diameter × 1.3-mm thickness) (n=4), the zirconia specimens were made from Lava, and their surfaces were treated in the following ways: as-sintered (control); with 50-μm aluminum oxide (Al2O3) particles; with 120-μm Al2O3 particles; with 250-μm Al2O3 particles; with 30-μm silica-modified Al2O3 particles (Cojet Sand); with 120-μm Al2O3 particles, followed by 110-μm silica-modified Al2O3 particles (Rocatec Plus); and with Rocatec Plus. The phase transformation (%) was assessed by x-ray diffraction analysis. The 3-point flexural strength test was conducted in artificial saliva at 37°C in a mechanical testing machine. The data were analyzed by 1-way ANOVA and the Tukey honestly significant difference post hoc test (α=.05). Results Except for the Cojet Sand group, which exhibited statistically similar flexural strength to that of the as-sintered group and for the group abraded with 250-μm Al2O3 particles, which presented the lowest strength, airborne-particle abrasion with the other particle sizes provided the highest values, with no significant difference among them. The as-sintered specimens presented no monoclinic phase. The groups abraded with smaller particles (30 μm and 50 μm) and those treated with the larger ones (110 μm and/or 120 μm particles and 250 μm) exhibited percentages of monoclinic phase that varied from 4% to 5% and from 8.7% to 10%. Conclusions Except for abrasion with Cojet Sand, depending on the particle size, zirconia exhibited an increase or a decrease in its flexural strength. Airborne-particle abrasion promoted phase transformation (tetragonal to monoclinic), and the percentage of monoclinic phase varied according to the particle size.
Resumo:
Purpose: To determine whether universal primers alone can deliver similar levels of adhesion of resin cement to zirconia ceramic when compared to their application in conjunction with airborne-particle abrasion.Materials and Methods: Sintered zirconia blocks (N = 160) (Lava, 3M ESPE), (5.25 x 5.25 x 3 mm(3)) were embedded in acrylic resin, polished, and randomly distributed into 16 groups (n = 10 per group), according to the factors "universal primer" (8 levels) and "air-particle abrasion" (2 levels): 1. ctr: control, without application of a universal primer; 2. AP: Alloy Primer; 3. MP: Monobond Plus; 4. MZP: Metal Zirconia Primer; 5. MZ: MZ Primer; 6. Sg: Signum Zirconia Bond; 7. SbU: Singlebond Universal; 8. ZP: Z Prime Plus. The universal primers were also used after air abrasion (A) of zirconia to form the following 8 groups: Ctr-A, AP-A, MP-A, MZP-A, MZ-A, Sg-A, SbU-A, and ZP-A. After ultrasonic cleaning, air abrasion was performed using Al2O3 particles (110 mu m, 2.5 bar, 20 s at 10 mm) in a chairside air-abrasion device. After ultrasonic cleaning again, universal primers were applied according to each manufacturer's recommendation. The resin cement (RelyX ARC, 3M ESPE) was built up incrementally and photo-polymerized on the zirconia surface using a silicone mold (empty set = 3.5, height = 3 mm). All specimens were stored in distilled water (60 days at 37 degrees C) and then subjected to shear bond strength testing (SBS) in a universal testing machine (1 mm/min). On a separate set of zirconia specimens, contact angle measurements were made using the sessile drop technique with a goniometer after the application of universal primers on control and air-abraded zirconia surfaces. Data (MPa) were analyzed using one-way ANOVA, Tukey's test, and Student's t-test (alpha = 0.05).Results: When universal primers were used alone, SbU presented significantly higher mean SBS (19.5 +/- 5.8) that did the other primers (0 to 9.9 +/- 6.6) (p = 0.001). When air abraded, the groups AP-A (14.1 +/- 6.1), MP-A (15.9 +/- 5.4), ZP-A (16.9 +/- 7.3), SG-A (19.1 +/- 2.1), SbU-A (12 +/- 1.5) showed significant differences (p = 0.03). Adhesive performance of all universal primers was enhanced after air abrasion, with the exception of the SbU and MZ primers. After air abrasion, contact angle measurements were lower for the each primer (without air abrasion: 28.9 to 83.9; with air abrasion: 27.1 to 63.0), except for MZP.Conclusion: Air abrasion with 110 mu m Al2O3 followed by universal primer application increased the bond strength of tested resin cement to zirconia, with the exception of SbU and MZ.
Resumo:
As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 mu m) the campaign median and quartiles of FBAP number and mass concentration were 7.3x10(4) m(-3) (4.0-13.2x10(4) m(-3)) and 0.72 mu g m(-3) (0.42-1.19 mu g m(-3)), respectively, accounting for 24% (11-41%) of total particle number and 47% (25-65%) of total particle mass. During the five-week campaign in February-March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 mu m, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 mu m was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 mu m. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.
Resumo:
This study deals with the seasonal distribution of Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn and water soluble ions (Cl-, PO43-, NO3-, SO42-, HCOO-, CH3COO-, oxalate, succinate, Na+, NH4+, K+, Mg2+ and Ca2+) found in PM10 samples (particulate matter less than 10 mu m in diameter) Sao Paulo City, Brazil, (April 2003-May 2004). Higher atmospheric levels were found for SO42-, NO3-, Cl- and PO43- while the main organic anions were oxalate and formate. Atmospheric levels for elements were: Fe > Al > Ca > K > Na > Mg > Zn > Cu > Pb. Some sources were predominant for some species: (i) fuel burning and/or biomass burning (NO3-, HCOO-, C2O42-, K+, Mg2+, Ca2+, Fe, Pb, Zn, Al, Ca, K and Mg), (ii) gas-to-particle conversion (SO42- and NH4+) and (iii) sea salt spray (Cl-, Na+ and Na).
Resumo:
The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17–19 April 2010 and 16–19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 μm. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM10 mass concentrations at the Jungfraujoch reached 30 μgm−3 and 70 μgm−3 (for 10-min mean values) duri ng the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 μgm−3 of volcanic ash related PM10 (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200–520) μgm−3 on 18 May 2010 over the northwestern Swiss plateau. The presented data significantly contributed to the time-critical assessment of the local ash layer properties during the initial eruption phase. Furthermore, dispersion models benefited from the detailed information on the volcanic aerosol size distribution and its chemical composition.
Resumo:
Evidence from epidemiological studies indicates that acute exposure to airborne pollutants is associated with an increased risk of morbidity and mortality attributed to cardiovascular diseases. The present study investigated the effects of combustion-derived ultrafine particles (diesel exhaust particles) as well as engineered nanoparticles (titanium dioxide and single-walled carbon nanotubes) on impulse conduction characteristics, myofibrillar structure and the formation of reactive oxygen species in patterned growth strands of neonatal rat ventricular cardiomyocytes in vitro. Diesel exhaust particles as well as titanium dioxide nanoparticles showed the most pronounced effects. We observed a dose-dependent change in heart cell function, an increase in reactive oxygen species and, for titanium dioxide, we also found a less organized myofibrillar structure. The mildest effects were observed for single-walled carbon nanotubes, for which no clear dose-dependent alterations of theta and dV/dt(max) could be determined. In addition, there was no increase in oxidative stress and no change in the myofibrillar structure. These results suggest that diesel exhaust as well as titanium dioxide particles and to a lesser extent also single-walled carbon nanotubes can directly induce cardiac cell damage and can affect the function of the cells.
Resumo:
Satellite measurement validations, climate models, atmospheric radiative transfer models and cloud models, all depend on accurate measurements of cloud particle size distributions, number densities, spatial distributions, and other parameters relevant to cloud microphysical processes. And many airborne instruments designed to measure size distributions and concentrations of cloud particles have large uncertainties in measuring number densities and size distributions of small ice crystals. HOLODEC (Holographic Detector for Clouds) is a new instrument that does not have many of these uncertainties and makes possible measurements that other probes have never made. The advantages of HOLODEC are inherent to the holographic method. In this dissertation, I describe HOLODEC, its in-situ measurements of cloud particles, and the results of its test flights. I present a hologram reconstruction algorithm that has a sample spacing that does not vary with reconstruction distance. This reconstruction algorithm accurately reconstructs the field to all distances inside a typical holographic measurement volume as proven by comparison with analytical solutions to the Huygens-Fresnel diffraction integral. It is fast to compute, and has diffraction limited resolution. Further, described herein is an algorithm that can find the position along the optical axis of small particles as well as large complex-shaped particles. I explain an implementation of these algorithms that is an efficient, robust, automated program that allows us to process holograms on a computer cluster in a reasonable time. I show size distributions and number densities of cloud particles, and show that they are within the uncertainty of independent measurements made with another measurement method. The feasibility of another cloud particle instrument that has advantages over new standard instruments is proven. These advantages include a unique ability to detect shattered particles using three-dimensional positions, and a sample volume size that does not vary with particle size or airspeed. It also is able to yield two-dimensional particle profiles using the same measurements.
Resumo:
I have developed a novel approach to test for toxic organic substances adsorbed onto ultra fine particulate particles present in the ambient air in Northeast Houston, Texas. These particles are predominantly carbon soot with an aerodynamic diameter (AD) of <2.5 μm. If present in the ambient air, many of the organic substances will be absorbed to the surface of the particles (which act just like a charcoal air filter), and may be adducted into the respiratory system. Once imbedded into the lungs these particles may release the adsorbed toxic organic substances with serious health consequences. I used a Airmetrics portable Minivol air sampler time drawing the ambient air through collection filters samples from 6 separate sites in Northeast Houston, an area known for high ambient PM 2.5 released from chemical plants and other sources (e.g. vehicle emissions).(1) In practice, the mass of the collected particles were much less than the mass of the filters. My technique was designed to release the adsorbed organic substances on the fine carbon particles by heating the filter samples that included the PM 2.5 particles prior to identification by gas chromatography/mass spectrometry (GCMS). The results showed negligible amounts of target chemicals from the collection filters. However, the filters alone released organic substances and GCMS could not distinguish between the organic substances released from the soot particles from those released from the heated filter fabric. However, an efficacy tests of my method using two wax burning candles that released soot revealed high levels of benzene. This suggests that my method has the potential to reveal the organic substances adsorbed onto the PM 2.5 for analysis. In order to achieve this goal, I must refine the particle collection process which would be independent of the filters; the filters upon heating also release organic substances obscuring the contribution from the soot particles. To obtain pure soot particles I will have to filter more air so that the soot particles can be shaken off the filters and then analyzed by my new technique. ^
Resumo:
Bioaerosols are a subgroup of atmospheric aerosols and are often linked to the spread of human, animal and plant diseases. Bioaerosols also may play an indirect effect on environmental processes, including the formation of precipitation and alteration of the global climate through their role as nuclei for cloud droplet formation. Several types of biological organisms (e.g., fungi and bacteria) have been shown to be effective ice nuclei (IN) and cloud condensation nuclei (CCN). During 21 days in August 2013 we participated in a collaborative international campaign at a rural, coastal site near the village of Ucluelet on the west coast of Vancouver Island, British Columbia, Canada. The experiments were conducted as part of the NETCARE project (the NETwork on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments), in part to examine cloud nuclei properties of marine aerosol. The study was conducted from a mobile trailer located approximately 100 m from the coast. A suite of aerosol instrumentation was operated for approximately one month. Key instruments utilized as a part of this thesis include the wideband integrated bioaerosol sensor (WIBS-4A) and the multiple orifice uniform deposition impactor (MOUDI) coupled with an off-line droplet freezing technique (DFT) for the measurement of ice nucleation activity of particles in immersion mode. The WIBS measures the concentration and properties of individual fluorescent particles suspended in the air, which can serve as a proxy for airborne biological particle content. Particles shown to be fluorescent by the WIBS instrument were divided into seven categories based on the pattern of fluorescence each particle exhibited in the three fluorescent channels. Results of the WIBS analysis show that the fluorescent particle concentration in the region correlated well with IN number. The fluorescent particle concentration correlated well with the number of particles shown to be ice active as a function of both particle size and freezing temperature. Correlations involving marine aerosols and marine biological activity indicate that the majority of IN measured at the coastal site likely are not from have marine sources.