991 resultados para aerobic metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was designed to determine the exercise intensity equivalent to the metabolic aerobic/anaerobic transition of alloxan diabetic rats, through lactate minimum test (LMT), and to evaluate the effects of swimming exercise at this intensity (LM) on the glucose and protein metabolism of these animals. Adult male Wistar rats received alloxan (SD, alloxan-injected rats that remained sedentary) intravenously (30 mg kg(-1) body weight) for diabetes induction. As controls (SC, vehicle-injected rats that remained sedentary), vehicle-injected rats were utilized. Two weeks later, the animals were submitted to oral glucose tolerance test (oGTT) and LMT. After the tests, some of the animals were submitted to swimming exercise training [TC (vehicle-injected rats that performed a 6-week exercise program) and TD (alloxan-injected rats that performed a 6-week exercise program)] for I h day(-1), 5 days week(-1), with an overload equivalent to LM determined by LMT, for 6 weeks. At the end of the experiment, the animals were submitted to a second LMT and oGTT, and blood and skeletal muscle assessments (protein synthesis and degradation in the isolated soleus muscle) were made. The overload equivalent to LM at the beginning of the experiment was lower in the SID group than in the SC group. After training, the overload equivalent to LM was higher in the TC and TD groups than in the SC and SD groups. The blood glucose of TD rats during oGTT was lower than that of SD rats. Protein degradation was higher in the SD group than in other groups. We conclude that LMT was sensitive to metabolic and physiologic alterations caused by uncontrolled diabetes. Training at LM intensity improved aerobic condition and the glucose and protein metabolism of alloxan diabetic rats. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to describe a double-bout exercise test for non-exhaustive aerobic capacity determination in swimming rats. Adult rats were Submitted to 4 swimming tests at different intensities (4%, 6%, 7%, and 8% of body mass), with intervals of 48 h between them. Two exercise bouts of equal intensity lasting 5 min were performed, separated by 2 min with blood collection for lactate analysis. For each intensity, delta lactate was determined by subtracting lactate concentration at the end of the first effort from the lactate at the end of the second effort. Individual linear interpolation of delta lactate concentration enabled determination of a null delta, equivalent to the critical load (CL). Maxima) lactate steady state (MLSS) was also determined. The estimated CL was of 4.8% body mass and the MLSS was observed at 100% of CL, with blood lactate of 5.20 mmol/L. At 90%, blood lactate stabilized, with a progressive increase to 110% CL. These results offer a potential determination of aerobic capacity in swimming rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malnutrition is a common health problem in developing countries and is associated with alterations in glucose metabolism. In the present study we examine the effects of chronic aerobic exercise on some aspects of glucose metabolism in protein-deficient rats. Two groups of adult rats (90 days old) were used: Normal protein group (17%P)- kept on a normal protein diet during intra-uterine and postnatal life and Low protein group (6%P)- kept on a low protein diet during intrauterine and post natal life. After weaning (21 days old), half of the 17%P and 6%P rats were assigned to a Sedentary (Sed) or an Exercise-trained (Exerc = swimming, 1 hr/day, 5 days/week, supporting an overload of 5% of body weight) subgroup. The area under blood glucose concentration curve (Delta G) after an oral glucose load was higher in 17%P Sed rats (20%) than in other rats and lower in 6%P Exerc (11%) in relation to 6% Sed rats. The post-glucose increase in blood insulin (Delta I) was also higher in 17%P Sed (9%) than in other rats. on the other hand, the glucose disappearance rate after exogenous subcutaneous insulin administration (Kitt) was lower in 17%P Sed rats (66%) than in other rats. Glucose uptake by soleus muscle was higher in Exerc rats (30%) than in Sed rats. Soleus muscle glycogen synthesis was reduced in 6%P Sed rats (41%) compared to 17%P Sed rats but was restored in 6%P Exerc rats. Glycogen concentration was elevated in Exerc (32%) rats in comparison to Sed rats. The present results indicate that glucose-induced insulin release is reduced in rats fed low protein diet. This defect is counteracted by an increase in the sensitivity of the target tissues to insulin and glucose homeostasis is maintained. This adaptation allows protein deficient rats to preserve the ability to appropriately adapt to aerobic physical exercise training. (C) 2000 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to analyze the effect of two different high-intensity interval training (HIT) programs on selected aerobic physiological indices and 1500 and 5000 m running performance in well-trained runners. The following tests were completed (n = 17): (i) incremental treadmill test to determine maximal oxygen uptake (VO2max), running velocity associated with VO2 max (VVO2max), and the velocity corresponding to 3.5 mmol/L of blood lactate concentration (vOBLA); (ii) submaximal constant-intensity test to determine running economy (RE); and (iii) 1500 and 5000 m time trials on a 400 m track. Runners were then randomized into 95% vVO(2max) or 100% vVO(2max) groups, and undertook a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max), respectively) and 4 submaximal run sessions per week. Runners were retested on all parameters at the completion of the training program. The VO2 max values were not different after training for both groups. There was a significant increase in post-training vVO(2 max), RE, and 1500 in running performance in the 100% vVO(2 max) group. The vOBLA and 5000 m running performance were significantly higher after the training period for both groups. We conclude that vOBLA and 5000 m running performance can be significantly improved in well-trained runners using a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max)) and 4 submaximal run sessions per week. However, the improvement in vVO(2 max), RE, and 1500 in running performance seems to be dependent on the HIT program at 100% vVO(2 max).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to address the question if the VO2 kinetics is further improved as the aerobic training status increases from trained to elite level athletes. Maximal oxygen uptake (VO(2)max), work-rate associated to VO(2)max (IVO(2)max) and VO2 kinetics of moderate (Mod) and maximal exercise (Max) were determined in fifty-five subjects. Then, they were assigned into three groups: low (LF), intermediate (IF) and high (HF) aerobic fitness level. In average, the VO(2)max of LF, IF and HF groups were, respectively, 36.0 +/- 3.1, 51.1 +/- 4.5 and 68.1 +/- 3.9 ml . kg . min(-1) (p <= 0.05 among each other). VO2 kinetics mean response time of both exercise intensities were significantly faster (p <= 0.05) in HF (Mod, 27.5 +/- 5.5 s; Max, 32.6 +/- 8.3 s) and IF (Mod, 25.0 +/- 3.1 s; Max, 42.6 +/- 10.4 s) when compared to LF (Mod, 35.7 +/- 7.9 s; Max: 57.8 +/- 17.8 s). We can conclude that VO2 kinetics is improved as the fitness level is increased from low to intermediate but not further improved as the aerobic fitness level increases from intermediate to high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain insulin has had widespread metabolic, neurotrophic, and neuromodulatory functions and has been involved in the central regulation of food intake and body weight, learning and memory, neuronal development, and neuronal apoptosis. Purpose: The present study investigated the role of swimming training on cerebral metabolism on insulin concentrations in cerebellum and the body balance performance of diabetic rats. Methods: Forty Male Wistar rats were divided in four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD), and trained diabetic (TD). Diabetes was induced by alloxan (32 mg kg b.w.), single dose injection. The mean blood glucose of diabetic groups was 367 ± 40 mg/dl. Training program consisted in swimming 5 days/week, 1 h/day, 8 weeks, supporting a workload corresponding to 90% of maximal lactate steady state (MLSS). For the body balance testing rats were trained to traverse for 5 min daily for 5-7 days. All dependent variables were analyzed by one-way analysis of variance (ANOVA) and a significance level of p < 0.05 was used for all comparisons. Results: The body balance testing scores were different between groups. Insulin concentrations in cerebellum were not different between groups. Conclusion: It was concluded that in diabetic rats, aerobic training does not induce alterations on cerebellum insulin but induces important metabolic, hormonal and behavioral alterations which are associated with an improvement in glucose homeostasis, serum insulin concentrations and body balance. © 2013 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effects of an acute aerobic exercise on arterial pressure (AP), heart rate (HR), and baroreflex sensitivity (BRS) in STZ-induced diabetic rats. Male Wistar rats were divided into control (n = 8) and diabetic (n = 8) groups. AP, HR, and BRS, which were measured by tachycardic and bradycardic (BR) responses to AP changes, were evaluated at rest (R) and postexercise session (PE) on a treadmill. At rest, STZ diabetes induced AP and HR reductions, associated with BR impairment. Attenuation in resting diabetes-induced AP (R: 103 +/- 2 versus PE: 111 +/- 3 mmHg) and HR (R: 290 +/- 7 versus PE:328 +/- 10 bpm) reductions and BR dysfunction (R: -0.70 +/- 0.06 versus PE:-1.21 +/- 0.09 bpm/mmHg) was observed in the postexercise period. In conclusion, the hemodynamic and arterial baro-mediated control of circulation improvement in the postexercise period reinforces the role of exercise in the management of cardiovascular risk in diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among trypanosomatids, the genus Phytomonas is the only one specifically adapted to infect plants. These hosts provide a particular habitat with a plentiful supply of carbohydrates. Phytomonas sp. lacks a cytochrome-mediated respiratory chain and Krebs cycle, and ATP production relies predominantly on glycolysis. We have characterised the complete gene encoding a putative pyruvate/indolepyruvate decarboxylase (PDC/IPDC) (548 amino acids) of P. serpens, that displays high amino acid sequence similarity with phytobacteria and Leishmania enzymes. No orthologous PDC/IPDC genes were found in Trypanosoma cruzi or T. brucei. Conservation of the PDC/IPDC gene sequence was verified in 14 Phytomonas isolates. A phylogenetic analysis shows that Phytomonas protein is robustly monophyletic with Leishmania spp. and C. fasciculata enzymes. In the trees this clade appears as a sister group of indolepyruvate decarboxylases of gamma-proteobacteria. This supports the proposition that a horizontal gene transfer event from a donor phytobacteria to a recipient ancestral trypanosome has occurred prior to the separation between Phytomonas. Leishmania and Crithidia. We have measured the PDC activity in P. serpens cell extracts. The enzyme has a Km value for pyruvate of 1.4 mM. The acquisition of a PDC, a key enzyme in alcoholic fermentation, explains earlier observations that ethanol is one of the major end-products of glucose catabolism under aerobic and anaerobic conditions. This represents an alternative and necessary route to reoxidise part of the NADH produced in the highly demanding glycolytic pathway and highlights the importance of this type of event in metabolic adaptation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerobic exercise training (ET) has been established as an important non-pharmacological treatment of hypertension, since it decreases blood pressure. Studies show that the skeletal muscle abnormalities in hypertension are directly associated with capillary rarefaction, higher percentage of fast-twitch fibers (type II) with glycolytic metabolism predominance and increased muscular fatigue. However, little is known about these parameters in hypertension induced by ET. We hypothesized that ET corrects capillary rarefaction, potentially contributing to the restoration of the proportion of muscle fiber types and metabolic proprieties. Twelve-week old Spontaneously Hypertensive Rats (SHR, n=14) and Wistar Kyoto rats (WKY, n=14) were randomly assigned into 4 groups: SHR, trained SHR (SHR-T), WKY and trained WKY (WKY-T). As expected, ten weeks of ET was effective in reducing blood pressure in SHR-T group. In addition, we analyzed the main markers of ET. Resting bradycardia, increase of exercise tolerance, peak oxygen uptake and citrate synthase enzyme activity in trained groups (WKY-T and SHR-T) showed that the aerobic condition was achieved. ET also corrected the skeletal muscle capillary rarefaction in SHR-T. In parallel, we observed reduction in percentage of type IIA and IIX fibers and simultaneous augmented percentage of type I fibers induced by ET in hypertension. These data suggest that ET prevented changes in soleus fiber type composition in SHR, since angiogenesis and oxidative enzyme activity increased are important adaptations of ET, acting in the maintenance of muscle oxidative metabolism and fiber profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. - The aim of this study was to verify the relationship of aerobic and neuromuscular indexes with specific situations in judo. Method. - Eighteen male judokas took part in the study. The following assessments were performed: vertical jump (CMJ) on a force platform; Special Judo Fitness Test (SJFT) to obtain the number of throws and percentage of the maximal heart rate (%HRmax) one minute after the test; match simulation to obtain the peak blood lactate (LACmax) and the percentage of the blood lactate removal (BLR); incremental test to obtain the velocity at the anaerobic threshold (vAT) and peak velocity (PV) reached in the test. Results. - A significant correlation was observed between the number of throws in the SJFT, the vAT (r = 0.60; P < 0.01), PV (r = 0.70; P < 0.01) and CMJ (r = 0.74; P < 0.01). A significant inverse correlation was found between the LACmax and vAT (r = -0.59; P = 0.01). Conclusions. - It can be concluded that the performance in the SJFT was determined by the aerobic capacity and power and the muscle power. Athletes with greater aerobic ability (vAT) presented lower blood lactate accumulation after the match. (c) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is one of the principal causes of death in the world; almost 8.2 million of deaths were counted in 2012. Emerging evidences indicate that most of the tumors have an increased glycolytic rate and a detriment of oxidative phosphorylation to support abnormal cell proliferation; this phenomenon is known as aerobic glycolysis or Warburg effect. This switching toward glycolysis implies that cancer tissues metabolize approximately tenfold more glucose to lactate in a given time and the amount of lactate released from cancer tissues is much greater than from normal ones. In view of these fundamental discoveries alterations of the cellular metabolism should be considered a crucial hallmark of cancer. Therefore, the investigation of the metabolic differences between normal and transformed cells is important in cancer research and it might find clinical applications. The aim of the project was to investigate the cellular metabolic alterations at single cell level, by monitoring glucose and lactate, in order to provide a better insight in cancer research. For this purpose, electrochemical techniques have been applied. Enzyme-based electrode biosensors for lactate and glucose were –ad hoc- optimized within the project and used as probes for Scanning Electrochemical Microscopy (SECM). The UME biosensor manufacturing and optimization represented a consistent part of the work and a full description of the sensor preparation protocols and of the characterization methods employed is reported. This set-up (SECM used with microbiosensor probes) enabled the non-invasive study of cellular metabolism at single cell level. The knowledge of cancer cell metabolism is required to design more efficient treatment strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoleamine 2,3-dioxygenase (IDO) suppresses adaptive immunity. T-cell proliferation and differentiation to effector cells require increased glucose consumption, aerobic glycolysis and glutaminolysis. The effect of IDO on the above metabolic pathways was evaluated in alloreactive T-cells. Mixed lymphocyte reaction (MLR) in the presence or not of the IDO inhibitor, 1-DL-methyl-tryptophane (1-MT), was used. In MLRs, 1-MT decreased tryptophan consumption, increased cell proliferation, glucose influx and lactate production, whereas it decreased tricarboxylic acid cycle activity. In T-cells, from the two pathways that could sense tryptophan depletion, i.e. general control nonrepressed 2 (GCN2) kinase and mammalian target of rapamycin complex 1, 1-MT reduced only the activity of the GCN2 kinase. Additionally 1-MT treatment of MLRs altered the expression and/or the phosphorylation state of glucose transporter-1 and of key enzymes involved in glucose metabolism and glutaminolysis in alloreactive T-cells in a way that favors glucose influx, aerobic glycolysis and glutaminolysis. Thus in alloreactive T-cells, IDO through activation of the GCN2 kinase, decreases glucose influx and alters key enzymes involved in metabolism, decreasing aerobic glycolysis and glutaminolysis. Acting in such a way, IDO could be considered as a constraining factor for alloreactive T-cell proliferation and differentiation to effector T-cell subtypes.