953 resultados para additive partitioning
Resumo:
Strain BCT-7112, previously identified as Bacillus cereus var. toyoi, is the type strain of the species Bacillus toyonensis, a novel species of the B. cereus group. The complete genome of this strain, which is the active ingredient of the feed additive preparation Toyocerin, has been sequenced and annotated to reveal the genetic properties of this probiotic organism with a long history of safe use in animal nutrition.
Resumo:
Stable isotope abundances of carbon (δ13C) and nitrogen (δ15N) in the bone of 13 species of marine mammals from the northwest coast of Africa were investigated to assess their positions in the local trophic web and their preferred habitats. Also, samples of primary producers and potential prey species from the study area were collected to characterise the local isotopic landscape. This characterisation indicated that δ13C values increased from offshore to nearshore and that δ15N was a good proxy for trophic level. Therefore, the most coastal species were Monachus monachus and Sousa teuszii, whereas the most pelagic were Physeter macrocephalus and Balaenoptera acutorostrata. δ15N values indicated that marine mammals located at the lowest trophic level were B. acutorostrata, Stenella coeruleoalba and Delphinus sp., and those occupying the highest trophic level were M. monachus and P. macrocephalus. The trophic level of Orcinus orca was similar to that of M. monachus, suggesting that O. orca preys on fish. Conservation of coastal and threatened species (M. monachus and S. teuszii) off NW Africa should be a priority because these species, as the main apex predators, cannot be replaced by other marine mammals.
Resumo:
Infection with hepatitis E virus genotype 3 may result in chronic hepatitis in immunocompromised patients. Reduction of immunosuppression or treatment with ribavirin or pegylated interferon-α can result in viral clearance. However, safer and more effective treatment options are needed. Here, we show that sofosbuvir inhibits the replication of hepatitis E virus genotype 3 both in subgenomic replicon systems as well as a full-length infectious clone. Moreover, the combination of sofosbuvir and ribavirin results in an additive antiviral effect. Sofosbuvir may be considered as an add-on therapy to ribavirin for the treatment of chronic hepatitis E in immunocompromised patients.
Resumo:
Acting as antigen presenting cells, mature dendritic cells (DCs) initiate both innate and adaptive alloimmune responses. However, immature DCs are weak immunostimulators and mediate tolerogenic effects under certain conditions. Tolerogenic activities of immature DCs can be enhanced by pharmacological agents. Here, we compared pharmacological DC preconditioning with rapamycin and aspirin, applied alone or in combination, on LPS-induced DC maturation and T-cell allostimulatory capacity. Preconditioning with aspirin but not rapamycin tended to reduce the number of mouse bone marrow-derived immature DCs expressing CD40 and major histocompatibility complex class II molecules upon LPS stimulation. Conversely, DC preconditioning with rapamycin, but not aspirin, reduced T-cell alloproliferative responses. A combination of rapamycin and aspirin was more effective than either drug applied alone with respect to inhibition of T-cell alloproliferation. The two agents in combination reduced numbers of CD4(+)IFN-γ(+) Th1 and CD4(+)IL-17(+) Th17 effector cells while maintaining Foxp3(+) regulatory T cells. These results suggest aspirin may moderately enhance rapamycin-mediated inhibition of DC allostimulatory capacity.
Resumo:
Steganography is an information hiding application which aims tohide secret data imperceptibly into a cover object. In this paper, we describe anovel coding method based on Z2Z4-additive codes in which data is embeddedby distorting each cover symbol by one unit at most (+-1-steganography). Thismethod is optimal and solves the problem encountered by the most e cientmethods known today, concerning the treatment of boundary values. Theperformance of this new technique is compared with that of the mentionedmethods and with the well-known rate-distortion upper bound to conclude thata higher payload can be obtained for a given distortion by using the proposedmethod.
Resumo:
In this work, we provide an investigation of the role and strength of affinity interactions on the partitioning of the glucose-6-phosphate dehydrogenase in aqueous two-phase micellar systems. These systems are constituted of micellar surfactant solutions and offer both hydrophobic and hydrophilic environments, providing selectivity to biomolecules. We studied G6PD partitioning in systems composed of the nonionic surfactants, separately, in the presence and absence of affinity ligands. We observed that G6PD partitions to the micelle-poor phase, owing to the strength of excluded-volume interactions in these systems that drive the protein to the micelle-poor phase, where there is more free volume available.
Resumo:
The main objective of the present study was to verify the approach on starch-gelatin blending for the paperboard coating formulations with enhanced barrier and mechanical properties. Based on that, another objective was to find out, how the approach will function with wood-based polysaccharides (CMC, EHEC and HPC) by analyzing their barrier properties and convertibility. The last objective was to find out, if pigments can be used in the composition of polysaccharide-protein blends without causing any negative effect on stated properties. The whole process chain of the barrier coating development was studied in the research. The methodology applied included pilot-scale coating and converting trials for the evaluation of mechanical properties of obtained coatings, namely their exposure to cracking with the loss of barrier properties. The results obtained indicated that the combination of starch with gelatin, in fact, improves the grease barrier properties and flexibility of starch-based coatings, thereby confirming the offered approach. The similar results were obtained for CMC, exhibited elevated barrier properties and surface coverage, proving that the approach also functions with wood-based polysaccharides. The introduction of equal amounts of talc gave various effects at different gelatin dosages on barrier properties of wood-based polysaccharides. Mainly, the elevation of grease barrier properties was observed. The convertibility of talc-filled coatings was not sufficient.
Resumo:
To investigate the effects of trifluralin, chlorimuron and clomazone on morphology and assimilate partitioning during soybean development, plants were grown in a greenhouse and sampled at 14-day intervals. Clomazone reduced stem and leaf dry matter accumulation at 14 days after emergence (DAE), while trifluralin and chlorimuron reduced plant part dry matter accumulation up to 28 DAE. The number of leaves, plant height, mass and number of pods and seeds, and the shoot/root ratio were not influenced by the herbicides. Roots, stems and leaves were the preferred sinks up to the R2 growth stage, while pods and developing seeds became the preferred sinks later. This order was not altered by the herbicides.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, has gained a lot of interest in past recent years within various industries, such as medical and aerospace industries. LAM enables fabrication of complex 3D geometries by melting metal powder layer by layer with laser beam. Research in laser additive manufacturing has been focused in development of new materials and new applications in past 10 years. Since this technology is on cutting edge, efficiency of manufacturing process is in center role of research of this industry. Aim of this thesis is to characterize methods for process efficiency improvements in laser additive manufacturing. The aim is also to clarify the effect of process parameters to the stability of the process and in microstructure of manufactured pieces. Experimental tests of this thesis were made with various process parameters and their effect on build pieces has been studied, when additive manufacturing was performed with a modified research machine representing EOSINT M-series and with EOS EOSINT M280. Material used was stainless steel 17-4 PH. Also, some of the methods for process efficiency improvements were tested. Literature review of this thesis presents basics of laser additive manufacturing, methods for improve the process efficiency and laser beam – material- interaction. It was observed that there are only few public studies about process efficiency of laser additive manufacturing of stainless steel. According to literature, it is possible to improve process efficiency with higher power lasers and thicker layer thicknesses. The process efficiency improvement is possible if the effect of process parameter changes in manufactured pieces is known. According to experiments carried out in this thesis, it was concluded that process parameters have major role in single track formation in laser additive manufacturing. Rough estimation equations were created to describe the effect of input parameters to output parameters. The experimental results showed that the WDA (width-depth-area of cross-sections of single track) is correlating exponentially with energy density input. The energy density input is combination of the input parameters of laser power, laser beam spot diameter and scan speed. The use of skin-core technique enables improvement of process efficiency as the core of the part is manufactured with higher laser power and thicker layer thickness and the skin with lower laser power and thinner layer thickness in order to maintain high resolution. In this technique the interface between skin and core must have overlapping in order to achieve full dense parts. It was also noticed in this thesis that keyhole can be formed in LAM process. It was noticed that the threshold intensity value of 106 W/cm2 was exceeded during the tests. This means that in these tests the keyhole formation was possible.
Resumo:
Lamium album accumulates starch, sucrose and raffinose-family oligosaccharides (RFO) as the major products of photosynthesis. These products were measured in leaves throughout a sixteen-hour photoperiod and under various irradiance conditions. There was continuous accumulation of sucrose and starch. The rate of gas exchange was higher at 500 µEm² s-1 and 900 µEm²s-1 than at 300 µEm² s-1. The rate of photosynthesis did not decline over the sixteen-hour photoperiod, which suggested that there was no short-term feed back inhibition due to sucrose accumulation in this plant. When the products of photosynthesis were compared at the end of the photoperiod, only sucrose increased in abundance at high irradiance. The RFO pool in leaves was shown to contain raffinose, stachyose and verbascose; galactinol was also present. 14CO2 feeding demonstrated that roots and flowers were the major sinks. The middle leaves were major source leaves whilst young leaves acted as both sources and sinks.
Resumo:
In Lamium album, sucrose and raffinose-family oligosaccharides are the major products of photosynthesis that are stored in leaves. Using gas analysis and 14CO2 feeding, we compared photosynthesis and the partitioning of recently-fixed carbon in plants where sink activity was lowered by excision of flowers and chilling of roots with those where sink activity was not modified. Reduction in sink activity led to a reduction in the maximum rate of photosynthesis, to retention of fixed carbon in source leaves and to the progressive accumulation of raffinose-family oligosaccharides. This ultimately affected the extractable activities of invertase and sucrose phosphate synthase. At the end of the light period, invertase activity was significantly higher in treated plants. By contrast sucrose phosphate synthase activity was significantly lower in treated plants. We propose that reducing sink activity in L. album is associated with a shift in metabolism away from starch and sucrose synthesis and towards sucrose catabolism, galactinol utilisation and the synthesis of raffinose-family oligosaccharides.
Resumo:
Materiaalia lisäävä valmistus eli 3D-tulostus on valmistusmenetelmä, jossa kappale tehdään 3D-mallin pohjalta materiaalikerroksia lisäämällä, käyttäen useita tekniikoita ja materiaaleja. Menetelmää sovelletaan useilla teollisuuden aloilla. Lisääviä valmistustekniikoita on kehitetty 1990-luvun alkupuolelta lähtien, ja ne monipuolistuvat jatkuvasti. Tässä pro gradu -tutkielmassa tutkitaan sovellusalan terminologian kehitystä vertailevilla menetelmillä ja luodaan kolmikielinen sanasto alan asiantuntijoille, joita edustaa Suomessa FIRPA ry. Sanaston kielet ovat englanti, ranska ja suomi. Terminologian tutkimus on perinteisesti keskittynyt sanastotyöhön ja käsiteanalyysiin, sen sijaan termihistorian tutkimus on ollut vähäisempää. Tässä työssä on tehty vertailevaa termitutkimusta sekä sanastotyön että termihistorian näkökulmista. Vertailutasoja ovat termien merkityksen muuttuminen, vertailu pivot-kielen suhteen ja kielikohtaisten ominaisuuksien tarkastelu termien muotoutumisessa. Tutkittavia asioita ovat sanastokäsitteiden väliset suhteet, synonyymien, varianttien ja uudissanojen moninaisuus, ja termien yleiskielistyminen. Samalla pohditaan muita termien muuttumiseen vaikuttavia syita. Tärkeimpänä lähteenä käytetään Wohlersin vuosiraportteja, jotka kuvaavat kattavasti koko teollisuudenalaa. Koska englannin pivot-vaikutus on voimakasta teknisillä aloilla, omankielisen terminologian kehittyminen vaatii tietoista terminologiatyötä ja aktiivista omankielisten termien käyttöä. Terminologian vakiintumista voidaan arvioida termivarianttien ja uudissanojen määristä, sekä termien yleiskielistymisestä. Terminologia muuttuu jatkuvasti toimialan kehittyessä ja vaatii säännöllistä päivittämistä. Termihistorian tunteminen tukee sanastotyön termivalintoja. Alan asiantuntijat ovat vastuussa omasta terminologiastaan, ja heidän aktiivisuutensa on tärkeää sen kehittämisessä. Toteutettu sanasto on tämän pro gradu -tutkielman liitteenä ja se julkaistaan myös FIRPA ry:n Internet-sivustolla. Suomenkielinen osio sanastosta on ensimmäinen laaja suomeksi julkaistu materiaalia lisäävän valmistuksen sanasto.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).
Resumo:
This thesis studies the advantages, disadvantages and possibilities of additive manufacturing in making components with internal flow channels. These include hydraulic components, components with cooling channels and heat exchangers. Processes studied in this work are selective laser sintering and selective laser melting of metallic materials. The basic principles of processes and parameters involved in the process are presented and different possibilities of internal channel manufacturing and flow improvement are introduced