972 resultados para adaptive strategy
Resumo:
Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind farms for stability enhancement by using the proposed capability curve based reactive power controller; hence DFIG wind farms can function as vital dynamic reactive power resources for power utilities without commissioning additional dynamic reactive power devices. Several network adaptive droop control schemes are also proposed for network voltage management and their performance has been investigated during variable wind conditions. Furthermore, the influence of reactive power capability on network adaptive droop control strategies has been investigated and it has also been shown that enhanced reactive power capability of DFIGs can substantially improve the voltage control performance.
Resumo:
In this paper, we investigate adaptive linear combinations of graph coloring heuristics with a heuristic modifier to address the examination timetabling problem. We invoke a normalisation strategy for each parameter in order to generalise the specific problem data. Two graph coloring heuristics were used in this study (largest degree and saturation degree). A score for the difficulty of assigning each examination was obtained from an adaptive linear combination of these two heuristics and examinations in the list were ordered based on this value. The examinations with the score value representing the higher difficulty were chosen for scheduling based on two strategies. We tested for single and multiple heuristics with and without a heuristic modifier with different combinations of weight values for each parameter on the Toronto and ITC2007 benchmark data sets. We observed that the combination of multiple heuristics with a heuristic modifier offers an effective way to obtain good solution quality. Experimental results demonstrate that our approach delivers promising results. We conclude that this adaptive linear combination of heuristics is a highly effective method and simple to implement.
Resumo:
Correctly modelling and reasoning with uncertain information from heterogeneous sources in large-scale systems is critical when the reliability is unknown and we still want to derive adequate conclusions. To this end, context-dependent merging strategies have been proposed in the literature. In this paper we investigate how one such context-dependent merging strategy (originally defined for possibility theory), called largely partially maximal consistent subsets (LPMCS), can be adapted to Dempster-Shafer (DS) theory. We identify those measures for the degree of uncertainty and internal conflict that are available in DS theory and show how they can be used for guiding LPMCS merging. A simplified real-world power distribution scenario illustrates our framework. We also briefly discuss how our approach can be incorporated into a multi-agent programming language, thus leading to better plan selection and decision making.
Resumo:
This paper investigates a flexible fault ride through strategy for power systems in China with high wind power penetration. The strategy comprises of adaptive fault ride through requirements and maximum power restrictions of the wind farms with weak fault ride through capabilities. The slight faults and moderate faults with high probability are the main defending objective of the strategy. The adaptive fault ride through requirement in the strategy consists of two sub fault ride through requirements, a temporary slight voltage ride through requirement corresponding to a slight fault incident, with a moderate voltage ride through requirement corresponding to a moderate fault. The temporary overloading capability of the wind farm is reflected in both requirements to enhance the capability to defend slight faults and to avoid tripping when the crowbar is disconnected after moderate faults are cleared. For those wind farms that cannot meet the adaptive fault ride through requirement, restrictions are put on the maximum power output. Simulation results show that the flexible fault ride through strategy increases the fault ride through capability of the wind farm clusters and reduces the wind power curtailment during faults.
Resumo:
This paper employs a unique decentralised cooperative control method to realise a formation-based collision avoidance strategy for a group of autonomous vehicles. In this approach, the vehicles' role in the formation and their alert and danger areas are first defined, and the formation-based intra-group and external collision avoidance methods are then proposed to translate the collision avoidance problem into the formation stability problem. The extension–decomposition–aggregation formation control method is next employed to stabilise the original and modified formations, whilst manoeuvring, and subsequently solve their collision avoidance problem indirectly. Simulation study verifies the feasibility and effectiveness of the intra-group and external collision avoidance strategy. It is demonstrated that both formation control and collision avoidance problems can be simultaneously solved if the stability of the expanded formation including external obstacles can be satisfied.
Resumo:
In this study, we investigate an adaptive decomposition and ordering strategy that automatically divides examinations into difficult and easy sets for constructing an examination timetable. The examinations in the difficult set are considered to be hard to place and hence are listed before the ones in the easy set in the construction process. Moreover, the examinations within each set are ordered using different strategies based on graph colouring heuristics. Initially, the examinations are placed into the easy set. During the construction process, examinations that cannot be scheduled are identified as the ones causing infeasibility and are moved forward in the difficult set to ensure earlier assignment in subsequent attempts. On the other hand, the examinations that can be scheduled remain in the easy set.
Within the easy set, a new subset called the boundary set is introduced to accommodate shuffling strategies to change the given ordering of examinations. The proposed approach, which incorporates different ordering and shuffling strategies, is explored on the Carter benchmark problems. The empirical results show that the performance of our algorithm is broadly comparable to existing constructive approaches.
Resumo:
Institutions involved in the provision of tertiary education across Europe are feeling the pinch. European universities, and other higher education (HE) institutions, must operate in a climate where the pressure of government spending cuts (Garben, 2012) is in stark juxtaposition to the EU’s strategy to drive forward and maintain a growth of student numbers in the sector (eurostat, 2015).
In order to remain competitive, universities and HE institutions are making ever-greater use of electronic assessment (E-Assessment) systems (Chatzigavriil et all, 2015; Ferrell, 2012). These systems are attractive primarily because they offer a cost-effect and scalable approach for assessment. In addition to scalability, they also offer reliability, consistency and impartiality; furthermore, from the perspective of a student they are most popular because they can offer instant feedback (Walet, 2012).
There are disadvantages, though.
First, feedback is often returned to a student immediately on competition of their assessment. While it is possible to disable the instant feedback option (this is often the case during an end of semester exam period when assessment scores must be can be ratified before release), however, this option tends to be a global ‘all on’ or ‘all off’ configuration option which is controlled centrally rather than configurable on a per-assessment basis.
If a formative in-term assessment is to be taken by multiple groups of
students, each at different times, this restriction means that answers to each question will be disclosed to the first group of students undertaking the assessment. As soon as the answers are released “into the wild” the academic integrity of the assessment is lost for subsequent student groups.
Second, the style of feedback provided to a student for each question is often limited to a simple ‘correct’ or ‘incorrect’ indicator. While this type of feedback has its place, it often does not provide a student with enough insight to improve their understanding of a topic that they did not answer correctly.
Most E-Assessment systems boast a wide range of question types including Multiple Choice, Multiple Response, Free Text Entry/Text Matching and Numerical questions. The design of these types of questions is often quite restrictive and formulaic, which has a knock-on effect on the quality of feedback that can be provided in each case.
Multiple Choice Questions (MCQs) are most prevalent as they are the most prescriptive and therefore most the straightforward to mark consistently. They are also the most amenable question types, which allow easy provision of meaningful, relevant feedback to each possible outcome chosen.
Text matching questions tend to be more problematic due to their free text entry nature. Common misspellings or case-sensitivity errors can often be accounted for by the software but they are by no means fool proof, as it is very difficult to predict in advance the range of possible variations on an answer that would be considered worthy of marks by a manual marker of a paper based equivalent of the same question.
Numerical questions are similarly restricted. An answer can be checked for accuracy or whether it is within a certain range of the correct answer, but unless it is a special purpose-built mathematical E-Assessment system the system is unlikely to have computational capability and so cannot, for example, account for “method marks” which are commonly awarded in paper-based marking.
From a pedagogical perspective, the importance of providing useful formative feedback to students at a point in their learning when they can benefit from the feedback and put it to use must not be understated (Grieve et all, 2015; Ferrell, 2012).
In this work, we propose a number of software-based solutions, which will overcome the limitations and inflexibilities of existing E-Assessment systems.
Resumo:
Adaptive governance is an emerging theory in natural resource management. This paper addresses a gap in the literature by exploring the potential of adaptive governance for delivering resilience and sustainability in the urban context. We explore emerging challenges to transitioning to urban resilience and sustainability: bringing together multiple scales and institutions; facilitating a social-ecological-systems approach and; embedding social and environmental equity into visions of urban sustainability and resilience. Current approaches to adaptive governance could be helpful for addressing these first two challenges but not in addressing the third. Therefore, this paper proposes strengthening the institutional foundations of adaptive governance by engaging with institutional theory. We explore this through empirical research in the Rome Metropolitan Area, Italy. We argue that explicitly engaging with these themes could lead to a more substantive urban transition strategy and contribute to adaptive governance theory.
Resumo:
Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year
Resumo:
Engineering of negotiation model allows to develop effective heuristic for business intelligence. Digital ecosystems demand open negotiation models. To define in advance effective heuristics is not compliant with the requirement of openness. The new challenge is to develop business intelligence in advance exploiting an adaptive approach. The idea is to learn business strategy once new negotiation model rise in the e-market arena. In this paper we present how recommendation technology may be deployed in an open negotiation environment where the interaction protocol models are not known in advance. The solution we propose is delivered as part of the ONE Platform, open source software that implements a fully distributed open environment for business negotiation
Resumo:
The Iowa gambling task (IGT) is one of the most influential behavioral paradigms in reward-related decision making and has been, most notably, associated with ventromedial prefrontal cortex function. However, performance in the IGT relies on a complex set of cognitive subprocesses, in particular integrating information about the outcome of choices into a continuously updated decision strategy under ambiguous conditions. The complexity of the task has made it difficult for neuroimaging studies to disentangle the underlying neurocognitive processes. In this study, we used functional magnetic resonance imaging in combination with a novel adaptation of the task, which allowed us to examine separately activation associated with the moment of decision or the evaluation of decision outcomes. Importantly, using whole-brain regression analyses with individual performance, in combination with the choice/outcome history of individual subjects, we aimed to identify the neural overlap between areas that are involved in the evaluation of outcomes and in the progressive discrimination of the relative value of available choice options, thus mapping the two fundamental cognitive processes that lead to adaptive decision making. We show that activation in right ventromedial and dorsolateral prefrontal cortex was predictive of adaptive performance, in both discriminating disadvantageous from advantageous decisions and confirming negative decision outcomes. We propose that these two prefrontal areas mediate shifting away from disadvantageous choices through their sensitivity to accumulating negative outcomes. These findings provide functional evidence of the underlying processes by which these prefrontal subregions drive adaptive choice in the task, namely through contingency-sensitive outcome evaluation.
Resumo:
The deployment of Quality of Service (QoS) techniques involves careful analysis of area including: those business requirements; corporate strategy; and technical implementation process, which can lead to conflict or contradiction between those goals of various user groups involved in that policy definition. In addition long-term change management provides a challenge as these implementations typically require a high-skill set and experience level, which expose organisations to effects such as “hyperthymestria” [1] and “The Seven Sins of Memory”, defined by Schacter and discussed further within this paper. It is proposed that, given the information embedded within the packets of IP traffic, an opportunity exists to augment the traffic management with a machine-learning agent-based mechanism. This paper describes the process by which current policies are defined and that research required to support the development of an application which enables adaptive intelligent Quality of Service controls to augment or replace those policy-based mechanisms currently in use.
Resumo:
The existing dual-rate blind linear detectors, which operate at either the low-rate (LR) or the high-rate (HR) mode, are not strictly blind at the HR mode and lack theoretical analysis. This paper proposes the subspace-based LR and HR blind linear detectors, i.e., bad decorrelating detectors (BDD) and blind MMSE detectors (BMMSED), for synchronous DS/CDMA systems. To detect an LR data bit at the HR mode, an effective weighting strategy is proposed. The theoretical analyses on the performance of the proposed detectors are carried out. It has been proved that the bit-error-rate of the LR-BDD is superior to that of the HR-BDD and the near-far resistance of the LR blind linear detectors outperforms that of its HR counterparts. The extension to asynchronous systems is also described. Simulation results show that the adaptive dual-rate BMMSED outperform the corresponding non-blind dual-rate decorrelators proposed by Saquib, Yates and Mandayam (see Wireless Personal Communications, vol. 9, p.197-216, 1998).
Resumo:
Models which define fitness in terms of per capita rate of increase of phenotypes are used to analyse patterns of individual growth. It is shown that sigmoid growth curves are an optimal strategy (i.e. maximize fitness) if (Assumption 1a) mortality decreases with body size; (2a) mortality is a convex function of specific growth rate, viewed from above; (3) there is a constraint on growth rate, which is attained in the first phase of growth. If the constraint is not attained then size should increase at a progressively reducing rate. These predictions are biologically plausible. Catch-up growth, for retarded individuals, is generally not an optimal strategy though in special cases (e.g. seasonal breeding) it might be. Growth may be advantageous after first breeding if birth rate is a convex function of G (the fraction of production devoted to growth) viewed from above (Assumption 5a), or if mortality rate is a convex function of G, viewed from above (Assumption 6c). If assumptions 5a and 6c are both false, growth should cease at the age of first reproduction. These predictions could be used to evaluate the incidence of indeterminate versus determinate growth in the animal kingdom though the data currently available do not allow quantitative tests. In animals with invariant adult size a method is given which allows one to calculate whether an increase in body size is favoured given that fecundity and developmental time are thereby increased.
Resumo:
Through multiple case studies of firms we argue that firms that have developed corporate responsibility strategies, albeit informally at first, do so by making intentional, informed and collective choices about CSR initiatives. More precisely, we point to the importance of considering corporate identity in making these choices and to the process of adaptive coordination, which includes both responding to and influencing the CSR environment. We conclude that CSR strategic landscape are determined more and more by the astute and careful management of a network of cooperative and competitive stakeholder interests which possess both tangible and intangible value to a firm.