832 resultados para ad-hoc networks distributed algorithms atomic distributed shared memory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, urban vehicular ad hoc networks (VANETs) are gaining importance for inter-vehicle communication, because they allow for the local communication between vehicles without any infrastructure, configuration effort, and without expensive cellular networks. But such architecture may increase the complexity of routing since there is no central control system in urban VANETs. Therefore, a challenging research task is to improve urban VANETs' routing efficiency. ^ Hence, in this dissertation we propose two location-based routing protocols and a location management protocol to facilitate location-based routing in urban VANETs. The Multi-hop Routing Protocol (MURU) is proposed to make use of predicted mobility and geometry map in urban VANETs to estimate a path's life time and set up robust end-to-end routing paths. The Light-weight Routing Protocol (LIRU) is proposed to take advantage of the node diversity under dynamic channel condition to exploit opportunistic forwarding to achieve efficient data delivery. A scalable location management protocol (MALM) is also proposed to support location-based routing protocols in urban VANETs. MALM uses high mobility in VANETs to help disseminate vehicles' historical location information, and a vehicle is able to implement Kalman-filter based predicted to predict another vehicle's current location based on its historical location information. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cochin University of Science & Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While close talking microphones give the best signal quality and produce the highest accuracy from current Automatic Speech Recognition (ASR) systems, the speech signal enhanced by microphone array has been shown to be an effective alternative in a noisy environment. The use of microphone arrays in contrast to close talking microphones alleviates the feeling of discomfort and distraction to the user. For this reason, microphone arrays are popular and have been used in a wide range of applications such as teleconferencing, hearing aids, speaker tracking, and as the front-end to speech recognition systems. With advances in sensor and sensor network technology, there is considerable potential for applications that employ ad-hoc networks of microphone-equipped devices collaboratively as a virtual microphone array. By allowing such devices to be distributed throughout the users’ environment, the microphone positions are no longer constrained to traditional fixed geometrical arrangements. This flexibility in the means of data acquisition allows different audio scenes to be captured to give a complete picture of the working environment. In such ad-hoc deployment of microphone sensors, however, the lack of information about the location of devices and active speakers poses technical challenges for array signal processing algorithms which must be addressed to allow deployment in real-world applications. While not an ad-hoc sensor network, conditions approaching this have in effect been imposed in recent National Institute of Standards and Technology (NIST) ASR evaluations on distant microphone recordings of meetings. The NIST evaluation data comes from multiple sites, each with different and often loosely specified distant microphone configurations. This research investigates how microphone array methods can be applied for ad-hoc microphone arrays. A particular focus is on devising methods that are robust to unknown microphone placements in order to improve the overall speech quality and recognition performance provided by the beamforming algorithms. In ad-hoc situations, microphone positions and likely source locations are not known and beamforming must be achieved blindly. There are two general approaches that can be employed to blindly estimate the steering vector for beamforming. The first is direct estimation without regard to the microphone and source locations. An alternative approach is instead to first determine the unknown microphone positions through array calibration methods and then to use the traditional geometrical formulation for the steering vector. Following these two major approaches investigated in this thesis, a novel clustered approach which includes clustering the microphones and selecting the clusters based on their proximity to the speaker is proposed. Novel experiments are conducted to demonstrate that the proposed method to automatically select clusters of microphones (ie, a subarray), closely located both to each other and to the desired speech source, may in fact provide a more robust speech enhancement and recognition than the full array could.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) have been attracting increasing attention for decades due to their broad civilian and military applications. Basically, a MANET or WSN is a network of nodes connected by wireless communication links. Due to the limited transmission range of the radio, many pairs of nodes in MANETs or WSNs may not be able to communicate directly, hence they need other intermediate nodes to forward packets for them. Routing in such types of networks is an important issue and it poses great challenges due to the dynamic nature of MANETs or WSNs. On the one hand, the open-air nature of wireless environments brings many difficulties when an efficient routing solution is required. The wireless channel is unreliable due to fading and interferences, which makes it impossible to maintain a quality path from a source node to a destination node. Additionally, node mobility aggravates network dynamics, which causes frequent topology changes and brings significant overheads for maintaining and recalculating paths. Furthermore, mobile devices and sensors are usually constrained by battery capacity, computing and communication resources, which impose limitations on the functionalities of routing protocols. On the other hand, the wireless medium possesses inherent unique characteristics, which can be exploited to enhance transmission reliability and routing performance. Opportunistic routing (OR) is one promising technique that takes advantage of the spatial diversity and broadcast nature of the wireless medium to improve packet forwarding reliability in multihop wireless communication. OR combats the unreliable wireless links by involving multiple neighboring nodes (forwarding candidates) to choose packet forwarders. In opportunistic routing, a source node does not require an end-to-end path to transmit packets. The packet forwarding decision is made hop-by-hop in a fully distributed fashion. Motivated by the deficiencies of existing opportunistic routing protocols in dynamic environments such as mobile ad-hoc networks or wireless sensor networks, this thesis proposes a novel context-aware adaptive opportunistic routing scheme. Our proposal selects packet forwarders by simultaneously exploiting multiple types of cross-layer context information of nodes and environments. Our approach significantly outperforms other routing protocols that rely solely on a single metric. The adaptivity feature of our proposal enables network nodes to adjust their behaviors at run-time according to network conditions. To accommodate the strict energy constraints in WSNs, this thesis integrates adaptive duty-cycling mechanism to opportunistic routing for wireless sensor nodes. Our approach dynamically adjusts the sleeping intervals of sensor nodes according to the monitored traffic load and the estimated energy consumption rate. Through the integration of duty cycling of sensor nodes and opportunistic routing, our protocol is able to provide a satisfactory balance between good routing performance and energy efficiency for WSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet has become an integral part of our nation’s critical socio-economic infrastructure. With its heightened use and growing complexity however, organizations are at greater risk of cyber crimes. To aid in the investigation of crimes committed on or via the Internet, a network forensics analysis tool pulls together needed digital evidence. It provides a platform for performing deep network analysis by capturing, recording and analyzing network events to find out the source of a security attack or other information security incidents. Existing network forensics work has been mostly focused on the Internet and fixed networks. But the exponential growth and use of wireless technologies, coupled with their unprecedented characteristics, necessitates the development of new network forensic analysis tools. This dissertation fostered the emergence of a new research field in cellular and ad-hoc network forensics. It was one of the first works to identify this problem and offer fundamental techniques and tools that laid the groundwork for future research. In particular, it introduced novel methods to record network incidents and report logged incidents. For recording incidents, location is considered essential to documenting network incidents. However, in network topology spaces, location cannot be measured due to absence of a ‘distance metric’. Therefore, a novel solution was proposed to label locations of nodes within network topology spaces, and then to authenticate the identity of nodes in ad hoc environments. For reporting logged incidents, a novel technique based on Distributed Hash Tables (DHT) was adopted. Although the direct use of DHTs for reporting logged incidents would result in an uncontrollably recursive traffic, a new mechanism was introduced that overcome this recursive process. These logging and reporting techniques aided forensics over cellular and ad-hoc networks, which in turn increased their ability to track and trace attacks to their source. These techniques were a starting point for further research and development that would result in equipping future ad hoc networks with forensic components to complement existing security mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet has become an integral part of our nation's critical socio-economic infrastructure. With its heightened use and growing complexity however, organizations are at greater risk of cyber crimes. To aid in the investigation of crimes committed on or via the Internet, a network forensics analysis tool pulls together needed digital evidence. It provides a platform for performing deep network analysis by capturing, recording and analyzing network events to find out the source of a security attack or other information security incidents. Existing network forensics work has been mostly focused on the Internet and fixed networks. But the exponential growth and use of wireless technologies, coupled with their unprecedented characteristics, necessitates the development of new network forensic analysis tools. This dissertation fostered the emergence of a new research field in cellular and ad-hoc network forensics. It was one of the first works to identify this problem and offer fundamental techniques and tools that laid the groundwork for future research. In particular, it introduced novel methods to record network incidents and report logged incidents. For recording incidents, location is considered essential to documenting network incidents. However, in network topology spaces, location cannot be measured due to absence of a 'distance metric'. Therefore, a novel solution was proposed to label locations of nodes within network topology spaces, and then to authenticate the identity of nodes in ad hoc environments. For reporting logged incidents, a novel technique based on Distributed Hash Tables (DHT) was adopted. Although the direct use of DHTs for reporting logged incidents would result in an uncontrollably recursive traffic, a new mechanism was introduced that overcome this recursive process. These logging and reporting techniques aided forensics over cellular and ad-hoc networks, which in turn increased their ability to track and trace attacks to their source. These techniques were a starting point for further research and development that would result in equipping future ad hoc networks with forensic components to complement existing security mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La capacidad de comunicación de los seres humanos ha crecido gracias a la evolución de dispositivos móviles cada vez más pequeños, manejables, potentes, de mayor autonomía y más asequibles. Esta tendencia muestra que en un futuro próximo cercano cada persona llevaría consigo por lo menos un dispositivo de altas prestaciones. Estos dispositivos tienen incorporados algunas formas de comunicación: red de telefonía, redes inalámbricas, bluetooth, entre otras. Lo que les permite también ser empleados para la configuración de redes móviles Ad Hoc. Las redes móviles Ad Hoc, son redes temporales y autoconfigurables, no necesitan un punto de acceso para que los nodos intercambien información entre sí. Cada nodo realiza las tareas de encaminador cuando sea requerido. Los nodos se pueden mover, cambiando de ubicación a discreción. La autonomía de estos dispositivos depende de las estrategias de como sus recursos son utilizados. De tal forma que los protocolos, algoritmos o modelos deben ser diseñados de forma eficiente para no impactar el rendimiento del dispositivo, siempre buscando un equilibrio entre sobrecarga y usabilidad. Es importante definir una gestión adecuada de estas redes especialmente cuando estén siendo utilizados en escenarios críticos como los de emergencias, desastres naturales, conflictos bélicos. La presente tesis doctoral muestra una solución eficiente para la gestión de redes móviles Ad Hoc. La solución contempla dos componentes principales: la definición de un modelo de gestión para redes móviles de alta disponibilidad y la creación de un protocolo de enrutamiento jerárquico asociado al modelo. El modelo de gestión propuesto, denominado High Availability Management Ad Hoc Network (HAMAN), es definido en una estructura de cuatro niveles, acceso, distribución, inteligencia e infraestructura. Además se describen los componentes de cada nivel: tipos de nodos, protocolos y funcionamiento. Se estudian también las interfaces de comunicación entre cada componente y la relación de estas con los niveles definidos. Como parte del modelo se diseña el protocolo de enrutamiento Ad Hoc, denominado Backup Cluster Head Protocol (BCHP), que utiliza como estrategia de encaminamiento el empleo de cluster y jerarquías. Cada cluster tiene un Jefe de Cluster que concentra la información de enrutamiento y de gestión y la envía al destino cuando esta fuera de su área de cobertura. Para mejorar la disponibilidad de la red el protocolo utiliza un Jefe de Cluster de Respaldo el que asume las funciones del nodo principal del cluster cuando este tiene un problema. El modelo HAMAN es validado a través de un proceso la simulación del protocolo BCHP. El protocolo BCHP se implementa en la herramienta Network Simulator 2 (NS2) para ser simulado, comparado y contrastado con el protocolo de enrutamiento jerárquico Cluster Based Routing Protocol (CBRP) y con el protocolo de enrutamiento Ad Hoc reactivo denominado Ad Hoc On Demand Distance Vector Routing (AODV). Abstract The communication skills of humans has grown thanks to the evolution of mobile devices become smaller, manageable, powerful, more autonomy and more affordable. This trend shows that in the near future each person will carry at least one high-performance device. These high-performance devices have some forms of communication incorporated: telephony network, wireless networks, bluetooth, among others. What can also be used for configuring mobile Ad Hoc networks. Ad Hoc mobile networks, are temporary and self-configuring networks, do not need an access point for exchange information between their nodes. Each node performs the router tasks as required. The nodes can move, change location at will. The autonomy of these devices depends on the strategies of how its resources are used. So that the protocols, algorithms or models should be designed to efficiently without impacting device performance seeking a balance between overhead and usability. It is important to define appropriate management of these networks, especially when being used in critical scenarios such as emergencies, natural disasters, wars. The present research shows an efficient solution for managing mobile ad hoc networks. The solution comprises two main components: the definition of a management model for highly available mobile networks and the creation of a hierarchical routing protocol associated with the model. The proposed management model, called High Availability Management Ad Hoc Network (HAMAN) is defined in a four-level structure: access, distribution, intelligence and infrastructure. The components of each level: types of nodes, protocols, structure of a node are shown and detailed. It also explores the communication interfaces between each component and the relationship of these with the levels defined. The Ad Hoc routing protocol proposed, called Backup Cluster Head Protocol( BCHP), use of cluster and hierarchies like strategies. Each cluster has a cluster head which concentrates the routing information and management and sent to the destination when out of cluster coverage area. To improve the availability of the network protocol uses a Backup Cluster Head who assumes the functions of the node of the cluster when it has a problem. The HAMAN model is validated accross the simulation of their BCHP routing protocol. BCHP protocol has been implemented in the simulation tool Network Simulator 2 (NS2) to be simulated, compared and contrasted with a hierarchical routing protocol Cluster Based Routing Protocol (CBRP) and a routing protocol called Reactive Ad Hoc On Demand Distance Vector Routing (AODV).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la última década ha aumentado en gran medida el interés por las redes móviles Ad Hoc. La naturaleza dinámica y sin infraestructura de estas redes, exige un nuevo conjunto de algoritmos y estrategias para proporcionar un servicio de comunicación fiable extremo a extremo. En el contexto de las redes móviles Ad Hoc, el encaminamiento surge como una de las áreas más interesantes para transmitir información desde una fuente hasta un destino, con la calidad de servicio de extremo a extremo. Debido a las restricciones inherentes a las redes móviles, los modelos de encaminamiento tradicionales sobre los que se fundamentan las redes fijas, no son aplicables a las redes móviles Ad Hoc. Como resultado, el encaminamiento en redes móviles Ad Hoc ha gozado de una gran atención durante los últimos años. Esto ha llevado al acrecentamiento de numerosos protocolos de encaminamiento, tratando de cubrir con cada uno de ellos las necesidades de los diferentes tipos de escenarios. En consecuencia, se hace imprescindible estudiar el comportamiento de estos protocolos bajo configuraciones de red variadas, con el fin de ofrecer un mejor encaminamiento respecto a los existentes. El presente trabajo de investigación muestra precisamente una solución de encaminamiento en las redes móviles Ad Hoc. Dicha solución se basa en el mejoramiento de un algoritmo de agrupamiento y la creación de un modelo de encaminamiento; es decir, un modelo que involucra la optimización de un protocolo de enrutamiento apoyado de un mecanismo de agrupación. El algoritmo mejorado, denominado GMWCA (Group Management Weighted Clustering Algorithm) y basado en el WCA (Weighted Clustering Algorithm), permite calcular el mejor número y tamaño de grupos en la red. Con esta mejora se evitan constantes reagrupaciones y que los jefes de clústeres tengan más tiempo de vida intra-clúster y por ende una estabilidad en la comunicación inter-clúster. En la tesis se detallan las ventajas de nuestro algoritmo en relación a otras propuestas bajo WCA. El protocolo de enrutamiento Ad Hoc propuesto, denominado QoS Group Cluster Based Routing Protocol (QoSG-CBRP), utiliza como estrategia el empleo de clúster y jerarquías apoyada en el algoritmo de agrupamiento. Cada clúster tiene un jefe de clúster (JC), quien administra la información de enrutamiento y la envía al destino cuando esta fuera de su área de cobertura. Para evitar que haya constantes reagrupamientos y llamados al algoritmo de agrupamiento se consideró agregarle un jefe de cluster de soporte (JCS), el que asume las funciones del JC, siempre y cuando este haya roto el enlace con los otros nodos comunes del clúster por razones de alejamiento o por desgaste de batería. Matemáticamente y a nivel de algoritmo se han demostrado las mejoras del modelo propuesto, el cual ha involucrado el mejoramiento a nivel de algoritmo de clustering y del protocolo de enrutamiento. El protocolo QoSG-CBRP, se ha implementado en la herramienta de simulación Network Simulator 2 (NS2), con la finalidad de ser comparado con el protocolo de enrutamiento jerárquico Cluster Based Routing Protocol (CBRP) y con un protocolo de enrutamiento Ad Hoc reactivo denominado Ad Hoc On Demand Distance Vector Routing (AODV). Estos protocolos fueron elegidos por ser los que mejor comportamiento presentaron dentro de sus categorías. Además de ofrecer un panorama general de los actuales protocolos de encaminamiento en redes Ad Hoc, este proyecto presenta un procedimiento integral para el análisis de capacidades de la propuesta del nuevo protocolo con respecto a otros, sobre redes que tienen un alto número de nodos. Estas prestaciones se miden en base al concepto de eficiencia de encaminamiento bajo parámetros de calidad de servicio (QoS), permitiendo establecer el camino más corto posible entre un nodo origen y un nodo destino. Con ese fin se han realizado simulaciones con diversos escenarios para responder a los objetivos de la tesis. La conclusiones derivadas del análisis de los resultados permiten evaluar cualitativamente las capacidades que presenta el protocolo dentro del modelo propuesto, al mismo tiempo que avizora un atractivo panorama en líneas futuras de investigación. ABSTRACT In the past decade, the interest in mobile Ad Hoc networks has greatly increased. The dynamic nature of these networks without infrastructure requires a new set of algorithms and strategies to provide a reliable end-to-end communication service. In the context of mobile Ad Hoc networks, routing emerges as one of the most interesting areas for transmitting information from a source to a destination, with the quality of service from end-to-end. Due to the constraints of mobile networks, traditional routing models that are based on fixed networks are not applicable to Ad Hoc mobile networks. As a result, the routing in mobile Ad Hoc networks has experienced great attention in recent years. This has led to the enhancement of many routing protocols, trying to cover with each one of them, the needs of different types of scenarios. Consequently, it is essential to study the behavior of these protocols under various network configurations, in order to provide a better routing scheme. Precisely, the present research shows a routing solution in mobile Ad Hoc networks. This solution is based on the improvement of a clustering algorithm, and the creation of a routing model, ie a model that involves optimizing a routing protocol with the support of a grouping mechanism. The improved algorithm called GMWCA (Group Management Weighted Clustering Algorithm) and based on the WCA (Weighted Clustering Algorithm), allows to calculate the best number and size of groups in the network. With this enhancement, constant regroupings are prevented and cluster heads are living longer intra-cluster lives and therefore stability in inter-cluster communication. The thesis details the advantages of our algorithm in relation to other proposals under WCA. The Ad Hoc routing protocol proposed, called QoS Group Cluster Based Routing Protocol (QoSG-CBRP), uses a cluster-employment strategy and hierarchies supported by the clustering algorithm. Each cluster has a cluster head (JC), who manages the routing information and sends it to the destination when is out of your coverage area. To avoid constant rearrangements and clustering algorithm calls, adding a support cluster head (JCS) was considered. The JCS assumes the role of the JC as long as JC has broken the link with the other nodes in the cluster for common restraining reasons or battery wear. Mathematically and at an algorithm level, the improvements of the proposed model have been showed, this has involved the improvement level clustering algorithm and the routing protocol. QoSG-CBRP protocol has been implemented in the simulation tool Network Simulator 2 (NS2), in order to be compared with the hierarchical routing protocol Cluster Based Routing Protocol (CBRP) and with the reactive routing protocol Ad Hoc On Demand Distance Vector Routing (AODV). These protocols were chosen because they showed the best individual performance in their categories. In addition to providing an overview of existing routing protocols in Ad Hoc networks, this project presents a comprehensive procedure for capacity analysis of the proposed new protocol with respect to others on networks that have a high number of nodes. These benefits are measured based on the concept of routing efficiency under the quality of service (QoS) parameters, thus allowing for the shortest possible path between a source node and a destination node. To meet the objectives of the thesis, simulations have been performed with different scenarios. The conclusions derived from the analysis of the results to assess qualitatively the protocol capabilities presented in the proposed model, while an attractive scenario for future research appears.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍移动Ad hoc网络的应用前景和主要研究内容,阐述服务协议的重要性以及服务发现协议中的基本概念,针对现有的移动Ad hoc网络服务发现协议的核心技术和设计思想进行分析,选取几种典型的服务发现协议进行对比,总结得出各类服务发现协议的优缺点和适用范围,并指出该领域的进一步研究方向.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data caching is an attractive solution for reducing bandwidth demands and network latency in mobile ad hoc networks. Deploying caches in mobile nodes can reduce the overall traf c considerably. Cache hits eliminate the need to contact the data source frequently, which avoids additional network overhead. In this paper we propose a data discovery and cache management policy for cooperative caching, which reduces the power usage, caching overhead and delay by reducing the number of control messages flooded into the network .A cache discovery process based on position cordinates of neighboring nodes is developed for this .The stimulstion results gives a promising result based on the metrics of the studies.