915 resultados para action potential
Resumo:
The effective activity of the pectoralis major and deltoideus anterior muscles in horizontal flyer exercises with external loads of 25, 50, 75 and 100% of the maximum load was studied in 11 male volunteers. The electromyographic analysis was done by using MEDI-TRACE-200 surface electrodes connected to a biological signal acquisition mode coupled to a PC/AT computer. The electromyographic signals were processed and the values obtained were normalized through maximum voluntary isometric contraction. It was statistically observed that in all types and loads of this exercise, the muscles presented significant differences in the concentric and eccentric phases. In the concentric phase, when different loads were compared, the muscles were more active with 75 and 100% of the maximum load, while in the eccentric phase, higher activity was observed with 100% of the maximum load. By analyzing each load effect in the concentric phase, it was verified that the muscles on the left side were more active than those on the right side with 25, 75 and 100% of the maximum load.
Resumo:
Quantitative analysis of normal values of motor unit action potentials duration and amplitude of muscles tireoaritenoideus (TA), cricotireoideus (CT), cricoaritenoideus lateralis (CAL), and cricoaritenoideus posterioris (CAP) was performed in 14 adult normal Brazilian volunteers. The recordings were obtained by percutaneously inserted concentric needle electrode. Different motor unit action potentials were manually selected in each muscle for quantitative computerized analysis of duration and amplitude. The mean values for duration and amplitude were respectively 3.8 ms and 413 μV for TA, 4.9 ms and 585 μV for CT, 4.1 ms and 388 μV for CAL and 4.5 ms and 475 μV in CAP. There were no similar reports of normal values of motor unit action potentials in Brazilian subjects.
Resumo:
In this work 3 new cases of suprascapular nerve mononeuropathy are described. ENMG diagnosis criteria were: a) normal sensory conduction studies of the ipsolateral ulnar, median and radial nerves; b) bilateral suprascapular nerve latencies with bilateral compound muscle action potential, obtained from the infraspinatus muscle with symmetrical techniques; and c) abnormal neurogenic infraspinatus muscle electromyographic findings, coexisting with normal electromyographical data of the ipsolateral deltoideus and supraspinatus muscles. These 3 cases of suprascapular mononeurpathy were found in 6,080 ENMG exams from our University Hospital. For us this mononeuropathy is rare with a 0.05% occurrence.
Resumo:
The neuromodulatory effect of nitric oxide (NO) on glutamatergic transmission within the NTS related to cardiovascular regulation has been widely investigated. Activation of glutamatergic receptors in the NTS stimulates the production and release of NO and other nitrosyl substances with neurotransmitter/neuromodulator properties. The presence of NOS, including the protein nNOS and its mRNA in vagal afferent terminals in the NTS and nodose ganglion cells suggest that NO can act on glutamatergic transmission. We previously reported that iontophoresis of L-NAME on NTS neurons receiving vagal afferent inputs significantly decreased the number of action potentials evoked by iontophoretic application of AMPA. In addition, iontophoresis of the NO donor papaNONOate enhanced spontaneous discharge and the number of action potentials elicited by AMPA, suggesting that NO could be facilitating AMPA-mediated neuronal transmission within the NTS. Furthermore, the changes in renal sympathetic discharge during activation of baroreceptors and cardiopulmonary receptors involve activation of AMPA and NMDA receptors in the NTS and these responses are attenuated by microinjection of L-NAME in the NTS of conscious and anesthetized rats. Cardiovascular responses elicited by application of NO in the NTS are closely similar to those obtained after activation of vagal afferent inputs, and L-glutamate is the main neurotransmitter of vagal afferent fibers. In this review we discuss the possible neuromodulatory mechanisms of central produced/released NO on glutamatergic transmission within the NTS.
Resumo:
It was evaluated movements of lower limb in the double pulley system equipment on ten male volunteers during contraction of gastrocnemius (caput laterale ) and gluteus maximus muscles in the following movements: 1) hip extension with extended knee and erect trunk, 2) hip extension with flexed knee and erect trunk, 3) hip extension with flexed knee and erect trunk, 3) hip extension with extended knee and inclined trunk, 5) hip abduction along the midline, 7) hip abduction with extension beyond the midline, 8) adduction with hip flexion beyond the midline, 8) adduction with hip flexion beyond the midline, and 9) adduction with hip extension beyond the midline. Myoelectric signals were taken up by Lec Tec surface electrodes connected to a 6-channel Lynx electromyographic signal amplifier coupled with a computer equipped with a model CAD 10/26 analogue digital conversion board and with a specific software for signal recording and analysis. We observed weak gastrocnemius muscle activity for all movements studied. In the case of gluteus maximus, the most important potentials were observed for movement 2, while for the remaining movements the actions were of reasonable intensity. Compared to gluteus, gastrocnemius was less required for all movements.
Resumo:
Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.
Resumo:
It was analized the deltoid muscle anterior portion and the pectoralis major clavicular portion in 24 male volunteers using a two-channel electromyograph TECA TE 4, and Hewllet Packard surface electrodes, in 4 modalities of military press exercises with open grip. The results showed high inactivity for PMC in almost all the modalities while DA developed very high levels of action potentials in all the modalities assessed.
Resumo:
Alteration of the occlusion and the position of the jaw can affect the muscles of the neck, due to a relationship between the masticatory and cervical systems. Thus, the objective of this study was to verify whether the bite in maximal clenching effort, in centric occlusion, in individuals with clinically normal occlusion, and without a history of dysfunction in the masticatory system, influences the electromyographic activity of the upper trapezius muscle. A total of 19 normal individuals participated in the study, 14 of which were women (average age of 25.4 ± 4.14 years), and 5 were men (average age of 24.11 ± 3.28 years). The root mean square (RMS) amplitude and median frequency (MF) of the upper trapezium muscle with 40% and 60% of maximal voluntary contraction were analyzed under pre- and post-maximal clenching effort conditions in centric occlusion. The electromyographic signal was collected with a sampling frequency of 2. kHz and the value in RMS was obtained by a moving window of 200. ms. The paired Student's t-test was used to compare RMS amplitude and MF under pre- and post-maximal clenching effort conditions. The level of significance for each comparison was set to p<0.05. This study concluded that in individuals without a history of dysfunction of the masticatory system, maximum clenching effort in centric occlusion does not alter the electromyographic signal of the upper trapezius. © 2009 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.
Resumo:
The objective of this paper was to analyse the activity of the longissimus dorsi and the iliocostalis lumborum muscles--components of the erector spinae muscle--in order to determine: their action potentials during the use of a plain and a tilt Roman table; 2) to compare the action potentials of the two muscles; 3) to verify if the action potential of these two muscles remain constant during the arc of movement--knee flexion and extension--divided into angle ranges, and 4) to compare the action potentials of the muscles in movements performed in a free manner and against resistance. Twenty-three young volunteers were studied electromyographically and each muscle received a needle electrode (Mise) and a surface electrode. The results showed that the table model did not determine any difference in the action potential of the muscles and that, on average, the iliocostalis lumborum muscle developed a slightly higher action potential than the longissimus dorsi muscle during the free flexion of knees on the plain table. In more than 70% of the cases, there was no difference between the action potential of the muscles over the various angle ranges of knee flexion and extension. Relatively higher action potentials were recorded during knee flexion and extension against resistance than during the same movements performed in a free manner. This shows that the paravertebral musculature responds better to an overload (8 kg) imposed on the knee flexor group, confirming the stabilizing role of the longissimus dorsi and iliocostalis lumborum muscles during knee flexion and extension on a Roman table.
Resumo:
The enteric nervous system regulates autonomously from the central nervous system all the reflex pathways that control blood flow, motility, water and electrolyte transport and acid secretion. The ability of the gut to function in isolation is one of the most intriguing phenomenons in neurogastroenterology. This requires coding of sensory stimuli by cells in the gut wall. Enteric neurons are prominent candidates to relay mechanosensitivity. Surprisingly, the identity of mechanosensitive neurons in the enteric nervous system as well as the appropriate stimulus modality is unknown despite the evidence that enteric neurons respond to sustained distension. Objectives: The aim of our study was to record from mechanosensitive neurons using physiological stimulus modalities. Identification of sensory neurons is of central importance to understand sensory transmission under normal conditions and in gut diseases associated with sensorimotor dysfunctions, such as Irritable Bowel Syndrome. Only then it will be possible to identify novel targets that help to normalise sensory functions. Methods: We used guinea-pig ileum myenteric plexus preparations and recorded responses of all neurons in a given ganglion with a fast neuroimaging technique based on voltage sensitive dyes. To evoke a mechanical response we used two different kinds of stimuli: firstly we applied a local mechanical distortion of the ganglion surface with von Frey hair. Secondarily we mimic the ganglia deformation during physiological movements of myenteric ganglia in a freely contracting ileal preparation. We were able to reliably and reproducibly mimic this distortion by intraganglionic injections of small volumes of oxygenated and buffered Krebs solution using stimulus parameters that correspond to single contractions. We also performed in every ganglion tested, electrical stimulations to evoke fast excitatory postsynaptic potentials. Immunohistochemistry reactions were done with antibodies against Calbindin and NeuN, considered markers for sensory neurons. Results: Recordings were performed in 46 ganglia from 31 guinea pigs. In every ganglion tested we found from 1 to 21 (from 3% to 62%) responding cells with a median value of 7 (24% of the total number of neurons). The response consisted of an almost instantaneous spike discharge that showed adaptation. The median value of the action potential frequency in the responding neurons was 2.0 Hz, with a recording time of 1255 ms. The spike discharge lasted for 302 ± 231 ms and occurred only during the initial deformation phase. During sustained deformation no spike discharge was observed. The response was reproducible and was a direct activation of the enteric neurons since it remained after synaptic blockade with hexamethonium or ω-conotoxin and after long time perfusion with capsaicin. Muscle tone appears not to be required for activation of mechanosensory neurons. Mechanosensory neurons showed a response to mechanical stimulation related to the stimulus strength. All mechanosensory neurons received fast synaptic inputs. There was no correlation between mechanosensitivity and Calbindin-IR and NeuN-IR (44% of mechanosensitive neurones Calb-IR-/NeuN-IR-). Conclusions: We identified mechanosensitive neurons in the myenteric plexus of the guinea pig ileum which responded to brief deformation. These cells appear to be rapidly accommodating neurons which respond to dynamic change. All mechanosensitive neurons received fast synaptic input suggesting that their activity can be highly modulated by other neurons and hence there is a low stimulus fidelity which allows adjusting the gain in a sensory network. Mechanosensitivity appears to be a common feature of many enteric neurons belonging to different functional classes. This supports the existence of multifunctional enteric neurons which may fulfil sensory, integrative and motor functions.
Resumo:
Ventricular cells are immersed in a bath of electrolytes and these ions are essential for a healthy heart and a regular rhythm. Maintaining physiological concentration of them is fundamental for reducing arrhythmias and risk of sudden cardiac death, especially in haemodialysis patients and in the heart diseases treatments. Models of electrically activity of the heart based on mathematical formulation are a part of the efforts to improve the understanding and prediction of heart behaviour. Modern models incorporate the extensive and ever increasing amounts of experimental data in incorporating biophysically detailed mechanisms to allow the detailed study of molecular and subcellular mechanisms of heart disease. The goal of this project was to simulate the effects of changes in potassium and calcium concentrations in the extracellular space between experimental data and and a description incorpored into two modern biophysically detailed models (Grandi et al. Model; O’Hara Rudy Model). Moreover the task was to analyze the changes in the ventricular electrical activity, in particular by studying the modifications on the simulated electrocardiographic signal. We used the cellular information obtained by the heart models in order to build a 1D tissue description. The fibre is composed by 165 cells, it is divided in four groups to differentiate the cell types that compound human ventricular tissue. The main results are the following: Grandi et al. (GBP) model is not even able to reproduce the correct action potential profile in hyperkalemia. Data from hospitalized patients indicates that the action potential duration (APD) should be shorter than physiological state but in this model we have the opposite. From the potassium point of view the results obtained by using O’Hara model (ORD) are in agreement with experimental data for the single cell action potential in hypokalemia and hyperkalemia, most of the currents follow the data from literature. In the 1D simulations we were able to reproduce ECGs signal in most the potassium concentrations we selected for this study and we collected data that can help physician in understanding what happens in ventricular cells during electrolyte disorder. However the model fails in the conduction of the stimulus under hyperkalemic conditions. The model emphasized the ECG modifications when the K+ is slightly more than physiological value. In the calcium setting using the ORD model we found an APD shortening in hypocalcaemia and an APD lengthening in hypercalcaemia, i.e. the opposite to experimental observation. This wrong behaviour is kept in one dimensional simulations bringing a longer QT interval in the ECG under higher [Ca2+]o conditions and vice versa. In conclusion it has highlighted that the actual ventricular models present in literature, even if they are useful in the original form, they need an improvement in the sensitivity of these two important electrolytes. We suggest an use of the GBP model with modifications introduced by Carro et al. who understood that the failure of this model is related to the Shannon et al. model (a rabbit model) from which the GBP model was built. The ORD model should be modified in the Ca2+ - dependent IcaL and in the influence of the Iks in the action potential for letting it him produce a correct action potential under different calcium concentrations. In the 1D tissue maybe a heterogeneity setting of intra and extracellular conductances for the different cell types should improve a reproduction of the ECG signal.