970 resultados para acoustically excited flame
Resumo:
This paper reports the TR3 spectral studies on perfluorinated organic systems with the objective to understand the influence of perfluorination on the excited states. We have recorded the TR3 spectra and Raman excitation profiles of the triplet excited states of decafluorobenzophenone and fluoranil. It is found that the influence of perfluorination is more pronounced in the triplet excited state than the ground state and thus leads to enhanced reactivity for perfluorinated compounds through larger structural distortions.
Resumo:
p-Benzoquinone and its halogen substituted derivatives are known to have differing reactivities in the triplet excited state. While bromanil catalyzes the reduction of octaethylporphyrin most efficiently among the halogenated p-benzoquinones, the reaction does not take place in presence of the unsubstituted p-benzoquinone (T. Nakano and Y. Mori, Bull. Chem. Soc. Jpn., 67, 2627 (1994)). Understanding of such differences requires a detailed knowledge of the triplet state structures, normal mode compositions and excited state dynamics. In this paper, we apply a recently presented scheme (M. Puranik, S. Umapathy, J. G. Snijders, and J. Chandrasekhar, J. Chem, Phys., 115, 6106 (2001)) that combines parameters from experiment and computation in a wave packet dynamics simulation to the triplet states of p-benzoquinone and bromanil. The absorption and resonance Raman spectra of both the molecules have been simulated. The normal mode compositions and mode specific excited state displacements have been presented and compared. Time-dependent evolution of the absorption and Raman overlaps for all the observed modes has been discussed in detail. In p-benzoquinone, the initial dynamics is along the C=C stretching and C-H bending modes whereas in bromanil nearly equal displacements are observed along all the stretching coordinates.
Resumo:
Approximate deconvolution modeling is a very recent approach to large eddy simulation of turbulent flows. It has been applied to compressible flows with success. Here, a premixed flame which forms in the wake of a flameholder has been selected to examine the subgrid-scale modeling of reaction rate by this new method because a previous plane two-dimensional simulation of this wake flame, using a wrinkling function and artificial flame thickening, had revealed discrepancies when compared with experiment. The present simulation is of the temporal evolution of a round wakelike flow at two Reynolds numbers, Re = 2000 and 10,000, based on wake defect velocity and wake diameter. A Fourier-spectral code has been used. The reaction is single-step and irreversible, and the rate follows an Arrhenius law. The reference simulation at the lower Reynolds number is fully resolved. At Re = 10,000, subgrid-scale contributions are significant. It was found that subgrid-scale modeling in the present simulation agrees more closely with unresolved subgrid-scale effects observed in experiment. Specifically, the highest contributions appeared in thin folded regions created by vortex convection. The wrinkling function approach had not selected subgrid-scale effects in these regions.
Resumo:
Diethyl allyl phosphate (DEAP) monomer has been synthesized, and characterized, using H-1 NMR and direct ionization mass spectrometric (DI-MS) techniques. It was free-radically polymerized to yield the poly(diethyl allyl phosphate) (PDEAP). The direct pyrolysis-mass spectrometric (DP-MS) analysis of the PDEAP revealed that it undergoes thermal degradation to yield mainly the monomer. Utility of PDEAP as a potent flame-retardant additive in polystyrene (PS) and poly(methyl methacrylate) (PMMA) has also been established.
Resumo:
Thioxanthone has been investigated extensively owing to its unique photochemical and photophysical applications and its solvatochromic behavior. Here, we report the time-resolved resonance Raman studies on the structure of the lowest triplet excited state of thioxanthone in carbon tetrachloride. In addition, FT-IR and FT-Raman techniques have been used to study the vibrational structure in the ground state. To corroborate the experimental findings, density functional theory calculations have been carried out. Isotopic calculations and normal coordinate analysis have been used to help in assigning the observed bands to Raman vibrational modes. Structural information derived from this study is expected to help in better understanding the triplet state photochemistry of thioxanthone.
Resumo:
Nanocrystalline alpha-alumina was synthesized in an indigenously built ultrasonic flame pyrolysis (UFP) setup. This paper describes the technical aspects of the apparatus and particle formation in the flame. Ultrasonically atomized aluminium nitrate dissolved in methanol-water mixture was pyrolyzed in an oxy-propane flame for yielding nanocrystalline alpha-alumina. The formation of nanophase alumina was confirmed by powder XRD analysis. Scanning electron microscopy (SEM) analysis was carried out to study particulate morphology. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Soot particles are generated in a flame caused by burning ethylene gas. The particles are collected thermophoretically at different locations of the flame. The particles are used to lubricate a steel/steel ball on flat reciprocating sliding contact, as a dry solid lubricant and also as suspended in hexadecane. Reciprocating contact is shown to establish a protective and low friction tribo-film. The friction correlates with the level of graphitic order of the soot, which is highest in the soot extracted from the mid-flame region and is low in the soot extracted from the flame root and flame tip regions. Micro-Raman spectroscopy of the tribo-film shows that the a priori graphitic order, the molecular carbon content of the soot and the graphitization of the film as brought about by tribology distinguish between the frictions of soot extracted from different regions of the flame, and differentiate the friction associated with dry tribology from that recorded under lubricated tribology.
Resumo:
He propose a new time domain method for efficient representation of the KCG and delineation of its component waves. The method is based on the multipulse Linear prediction (LP) coding which is being widely used in speech processing. The excitation to the LP synthesis filter consists of a few pulses defined by their locations and amplitudes. Based on the amplitudes and their distribution, the pulses are suitably combined to delineate the component waves. Beat to beat correlation in the ECG signal is used in QRS periodicity prediction. The method entails a data compression of 1 in 6. The method reconstructs the signal with an NMSE of less than 5%.
Resumo:
Nano ceramic alumina powders are synthesized by solution combustion synthesis using aluminium nitrate as oxidizer and urea as fuel with different fuel to oxidizer ratio. The variation of adiabatic flame temperatures are calculated theoretically for different fuel/oxidizer ratio according to thermodynamic concept and correlated with the observed flame (reaction) temperatures. A ``multi channel thermocouple setup connected to computer interfaced Keithley multi meter 2700'' is used to monitor the thermal events occurring during the process. The combustion products, characterized by XRD, show that the powders are composed of polycrystalline oxides with crystallite size of 32 to 52 nm. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various fuel to oxide ratio has been proposed for the nature of combustion and its correlation with the characteristics of as-synthesized powder.
Resumo:
An in-depth understanding of biological processes often requires detailed atomic resolution structures of the molecules involved. However in solution where most of these processes occur the conformation of biomolecules like RNA, DNA and proteins is not static but fluctuates. Routinely used structural techniques like X-ray crystallography, NMR spectroscopy and cryo-electron microscopy have almost always been used to determine the structure of the dominant conformation or obtain an average structure of the biomolecule in solution with very little detailed information regarding the dynamics of these molecules in solution. Over the last few years, NMR based methods have been developed to study the dynamics of these biomolecules in solution in a site-specific manner with the aim of generating structures of the different conformations that these molecules can adopt in solution. One powerful technique is the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiment, which can be used to detect and characterize protein excited states that are populated for as less as 0.5% of the time with ∼0.5–10 millisecond lifetimes. Due to recent advances in NMR pulse sequences and labeling methodology, it is now possible to determine the structures of these transiently populated excited states with millisecond lifetimes by obtaining accurate chemical shifts, residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) of these excited states. In these excited states the dynamics of some methyl containing residues can also be studied.
Resumo:
Ethylene gas is burnt and the carbon soot particles are thermophoretically collected using a home-built equipment where the fuel air injection and intervention into the 7.5-cm long flame are controlled using three small pneumatic cylinders and computer-driven controllers. The physical and mechanical properties and tribological performance of the collected soot are compared with those of carbon black and diesel soot. The crystalline structures of the nanometric particles generated in the flame, as revealed by high-resolution transmission electron studies, are shown to vary from the flame root to the exhaust. As the particle journeys upwards the flame, through a purely amorphous coagulated phase at the burner nozzle, it leads to a well-defined crystalline phase shell in the mid-flame zone and to a disordered phase consisting of randomly distributed short-range crystalline order at the exhaust. In the mid-flame region, a large shell of radial-columnar order surrounds a dense amorphous core. The hardness and wear resistance as well as friction coefficient of the soot extracted from this zone are low. The mechanical properties characteristics of this zone may be attributed to microcrystalline slip. Moving towards the exhaust, the slip is inhibited and there is an increase in hardness and friction compared to those in the mid-flame zone. This study of the comparison of flame soot to carbon black and diesel soot is further extended to suggest a rationale based on additional physico-chemical study using micro-Raman spectroscopy.