923 resultados para accelerometer, randomness check
Resumo:
Qualitative estimation of phytoplankton and zooplankton of the northern Red Sea and Gulf of Aqaba were carried out from four sites: Sharm El-Sheikh, Taba, Hurghada and Safaga. A total of 106 species and varieties of phytoplankton were identified including 41 diatoms, 53 dinoflagellates, 10 cyanophytes and 2 chlorophytes. The highest number of species was recorded at Sharm El-Sheikh (46 spp), followed by Safaga (40 spp), Taba (30 spp), and Hurghada (23 spp). About 95 of the recorded species were previously mentioned by different authors in the Red Sea and Gulf of Suez. Eleven species are considered new to the Red Sea. About 115 species of zooplankton were recorded from the different sites. They were dominated by four main phyla namely: Arthropoda, Protozoa, Mollusca, and Urochordata. Sharm El-Sheikh contributed the highest number of species (91) followed by Safaga (47) and Taba (34). Hurghada contributed the least (26). Copepoda dominated the other groups at the four sites. The appearances of Spirulina platensis, Pediastrum simplex, and Oscillatoria spp. of phytoplankton in addition to the rotifer species and the protozoan Difflugia oblongata of zooplankton impart a characteristic feature of inland freshwater discharge due to wastewater dumping at sea in these regions resulting from the expansion of cities and hotels along the coast.
Resumo:
Mechanical principles of fibre-optic disc accelerometers (FODA) different from those assumed in previous calculation methods are presented. An FODA with a high sensitivity of 82 rad/ g and a resonance frequency of 360 Hz is designed and tested. In this system, the minimum measurable demodulation phase of the phase-generated carrier (PGC) is 10(-5) rad, and the minimum acceleration reaches 120 ng theoretically. This kind of FODA, with its high responsivity, all-optic-fibre configuration, small size, light weight and stiff shell housing, ensures effective performance in practice.
Resumo:
The basic principle and critical characteristics of unattended ground sensors (UGS) based on fiber optic disk accelerometers are introduced. Mechanical principles of fiber optic disk accelerometers (FODA) and calculation methods are presented. An FODA with a high sensitivity of 120rad/g and a resonance frequency of 300Hz is designed and used for detection in military affair.
Resumo:
Fast forward error correction codes are becoming an important component in bulk content delivery. They fit in naturally with multicast scenarios as a way to deal with losses and are now seeing use in peer to peer networks as a basis for distributing load. In particular, new irregular sparse parity check codes have been developed with provable average linear time performance, a significant improvement over previous codes. In this paper, we present a new heuristic for generating codes with similar performance based on observing a server with an oracle for client state. This heuristic is easy to implement and provides further intuition into the need for an irregular heavy tailed distribution.
Resumo:
This paper is about performance assessment in serious games. We conceive serious gaming as a process of player-lead decision taking. Starting from combinatorics and item-response theory we provide an analytical model that makes explicit to what extent observed player performances (decisions) are blurred by chance processes (guessing behaviors). We found large effects both theoretically and practically. In two existing serious games random guess scores were found to explain up to 41% of total scores. Monte Carlo simulation of random game play confirmed the substantial impact of randomness on performance. For valid performance assessments, be it in-game or post-game, the effects of randomness should be included to produce re-calibrated scores that can reasonably be interpreted as the players´ achievements.
Resumo:
Scientific computation has unavoidable approximations built into its very fabric. One important source of error that is difficult to detect and control is round-off error propagation which originates from the use of finite precision arithmetic. We propose that there is a need to perform regular numerical `health checks' on scientific codes in order to detect the cancerous effect of round-off error propagation. This is particularly important in scientific codes that are built on legacy software. We advocate the use of the CADNA library as a suitable numerical screening tool. We present a case study to illustrate the practical use of CADNA in scientific codes that are of interest to the Computer Physics Communications readership. In doing so we hope to stimulate a greater awareness of round-off error propagation and present a practical means by which it can be analyzed and managed.