955 resultados para Zn2GeO4:Mn Phosphor
Resumo:
Two new one-dimensional heterometallic complexes, Mn3Na(L)(4)(CH3CO2)(MeOH)(2)]-(ClO4)(2)center dot 3H(2)O (1), Mn3Na(L)(4)(CH3CH2CO2)-(MeOH)(2)](ClO4)(2)center dot 2MeOH center dot H2O (2) LH2 = 2-methyl-2-(2-pyridyl)propane-1,3-diol], have been synthesized and characterized by X-ray crystallography. Both complexes feature Mn-II and Na-I ions in trigonal-prismatic geometries that are linked to octahedral Mn-IV ions by alkoxy bridges. Variable-temperature direct- and alternating-current magnetic susceptibility data indicated a spin ground state of S = 11/2 for both complexes. Density functional theory calculations performed on 1 supported this conclusion.
Resumo:
Four new three-dimensional Mn2+ ion-containing compounds have been prepared by employing a hydrothermal reaction between Mn(CH3COO)(2)center dot 4H(2)O, sulfodibenzoic acid (H(2)SDBA), imidazole, alkali hydroxide and water at 220 degrees C for 1 day. The compounds have Mn-5 (1-4) clusters connected by SDBA, forming the three-dimensional structure. A time and temperature dependent study on the synthesis mixture revealed the formation of a one-dimensional compound, Mn(SDBA)(H2O)(2), at lower temperatures (T <= 180 degrees C). The stabilization of the fcu related topology in the compounds is noteworthy. Magnetic studies indicate strong anti-ferromagnetic interactions between the Mn2+ ions within the clusters in the temperature range 75-300 K. The rare participation of a sulfonyl group in the bonding is important and can pave way for the design of new structures.
Resumo:
CrSi2 was earlier reported to be an interesting thermoelectric material for high temperature applications because of its high oxidation resistance and good mechanical properties. In order to enhance its figure of merit, Mn at Cr site and Al at Si site were substituted into CrSi2. Our results indicate that Cr1-x Mn (x) Si2-x Al (x) solid solutions exhibit significantly lower thermal conductivity and a higher figure of merit than CrSi2.
Resumo:
A combination of chemical and thermal annealing techniques has been employed to synthesize a rarely reported nanocup structure of Mn doped ZnO with good yield. Nanocup structures are obtained by thermally annealing the powder samples consisting of nanosheets, synthesized chemically at room temperature, isochronally in a furnace at 200-500 degrees C temperature range for 2 h. Strong excitonic absorption in the UV and photoluminescence (PL) emission in UV-visible regions are observed in all the samples at room temperature. The sample obtained at 300 degrees C annealing temperature exhibits strong PL emission in the UV due to near-band-edge emission along with very week defect related emissions in the visible regions. The synthesized samples have been found to be exhibiting stable optical properties for 10 months which proved the unique feature of the presented technique of synthesis of nanocup structures. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Mn- doped SrTiO3.0, when synthesized free of impurities, is a paramagnetic insulator with interesting dielectric properties. Since delocalized charge carriers are known to promote ferromagnetism in a large number of systems via diverse mechanisms, we have looked for the possibility of any intrinsic, spontaneous magnetization by simultaneous doping of Mn ions and electrons into SrTiO3 via oxygen vacancies, thereby forming SrTi1-xMnxO3-delta, to the extent of making the doped system metallic. We find an absence of any enhancement of the magnetization in the metallic sample when compared with a similarly prepared Mn doped, however, insulating sample. Our results, thus, are not in agreement with a recent observation of a weak ferromagnetism in metallic Mn doped SrTiO3 system.
Resumo:
Mn doping in ZnS nanoplatelets has been shown to induce a structural transition from the wurtzite to the zinc blende phase. We trace the origin of this transition to quantum confinement effects, which shift the valence band maximum of the wurtzite and zinc blende polyrnorphs of ZnS at different rates as a function of the nanocrystal size, arising from different effective hole masses in the two structures. This modifies the covalency associated with Mn incorporation and is reflected in the size-dependent binding energy difference for the two structures.
Resumo:
Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width <= 150 meV in the orange-red region and a surprisingly large spectral width (>= 180 meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (similar to 370 meV) covering the deep green-deep red region and (ii) exhibit widths substantially lower (similar to 60-75 meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.
Resumo:
Friction stir processing was carried out on the Al-Mg-Mn alloy to achieve ultrafine grained microstructure. The evolution of microstructure and micro-texture was studied in different regions of the deformed sample, namely nugget zone, thermo-mechanically affected zone (TMAZ) and base metal. The average grain sizes of the nugget zone, TMAZ and base metal are 1.5 mu m +/- 0.5 mu m, 15 mu m +/- 8 mu m, and 80 mu m +/- 10 mu m, respectively. The TMAZ exhibits excessive deformation banding structure and sub-grain formation. The orientation gradient within the sub-grain is dependent on grain size, orientation, and distance from nugget zone. The microstructure was partitioned based on the grain orientation spread and grain size values to separate the recrystallized fraction from the deformed region in order to understand the micromechanism of grain refinement. The texture of both deformed and recrystallized regions are similar in nature. Microstructure and texture analysis suggest that the restoration processes are different in different regions of the processed sample. The transition region between nugget zone and TMAZ exhibits large elongated grains surrounded by fine equiaxed grains of different orientation which indicate the process of discontinuous dynamic recrystallization. Within the nugget zone, similar texture between deformed and recrystallized grain fraction suggests that the restoration mechanism is a continuous process.
Resumo:
Mn0.4Zn0.6Fe2O4 powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 degrees C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz-1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic emission (MAE) activity along hysteresis loop is proportional to the hysteresis losses during the same loop. This law has been verified on series of polycrystalline ferrites and found that the law is valid whatever the composition, the grain size and temperature. It is also found that the domain wall creation/or annihilation processes are the origin of the MAE. (C) 2013 Published by Elsevier Ltd.
Resumo:
In the present work, Co1-xMnxFe2O4 nanoparticles were synthesized by the low-temperature auto-combustion method. The thermal decomposition process was investigated by means of differential and thermal gravimetric analysis (TG-DTA) that showed the precursor yield the final product above 450 degrees C. The phase purity and crystal lattice symmetry were estimated from X-ray diffraction (XRD). Microstructural features observed by scanning electron microscopy (SEM) demonstrates that the fine clustered particles were formed with an increase in average grain size with Mn2+ content. Fourier transform infrared spectroscopy (FTIR) study confirms the formation of spinel ferrite. Room temperature magnetization measurements showed that the magnetization M-s increases from 29 to 60 emu/g and H-c increases from 13 to 28 Oe with increase in Mn2+ content, which implies that these materials may be applicable for magnetic data storage and recording media. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Four new oxo-centered Mn-III-salicylaldoximate triangle-based extended complexes (Mn6O2)-O-III(salox)(6)(EtOH)(4)(phda)](n)(saloxH(2))(n)(2H(2)O)(n) (1), (Mn6O2)-O-III(salox)(6)(MeOH)(5)(5-I-isoph)](n)(3MeOH)(n) (2), (Mn6O2)-O-III(salox)(6)(MeOH)(4)(H2O) (5-N-3-isoph)](n)(4MeOH)(n) (3) and (Mn3NaO)-Na-III(salox)(3)(MeOH)(4)(5-NO2-isoph)](n)(MeOH)(n) (H2O)(n) (4) salox=salicylaldoximate, phda=1,3-phenylenediacetate, isoph=isophthalate] have been synthesized under similar reaction conditions. Single crystal X-ray structures show that in 1, only one type of Mn-6 cluster is arranged in 1D, whereas in 2 and 3 there are two types of clusters, differing in the way the triangle units are joined and assembled. In complex4, however, the basic building structure is heteronuclear and based on Mn-3 units extended in 2D. Susceptibility measurements (dc and ac) over a wide range of temperatures and fields show that the complexes1, 2, and 3 behave as single molecule magnets (SMMs) with S=4ground state, while 4 is dominantly antiferromagnetic with a ground spin state S=2. Density functional theory calculations have been performed on model complexes to provide a qualitative theoretical interpretation for their overall magnetic behavior.
Resumo:
Two new anionic inorganic-organic hybrid compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5), I, and H3O](2)Mn-7(mu(3)-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8), II have been prepared by employing mild solvothennal methods. Both the compounds have three-dimensionally extended structures formed by Mn-6 and Mn-7 clusters, respectively. The connectivity between Mn-6 and Mn-7 clusters and 4,4'-sulfonyldibenzoic acid anions (SDBA(2-)) results in a six connected pcu network in I and an eight connected bcu network in II. The presence of hydronium ion (H-3(O+)) along with the solvent molecules in the channels of both the compounds suggested proton conduction in the solids. Proton conductivity studies gave values of similar to 3 x 10(-4) Omega(-1) cm(-1) 98% relative humidity in both the compounds. The high activation energies indicate a vehicle mechanism in the compounds I and II. Magnetic studies indicate antiferromagnetic behavior in both the compounds.
Resumo:
The electronic structure of Nd1-xYxMnO3 (x-0-0.5) is studied using x-ray absorption near-edge structure (XANES) spectroscopy at the Mn K-edge along with the DFT-based LSDA+U and real space cluster calculations. The main edge of the spectra does not show any variation with doping. The pre-edge shows two distinct features which appear well-separated with doping. The intensity of the pre-edge decreases with doping. The theoretical XANES were calculated using real space multiple scattering methods which reproduces the entire experimental spectra at the main edge as well as the pre-edge. Density functional theory calculations are used to obtain the Mn 4p, Mn 3d and O 2p density of states. For x=0, the site-projected density of states at 1.7 eV above Fermi energy shows a singular peak of unoccupied e(g) (spin-up) states which is hybridized Mn 4p and O 2p states. For x=0.5, this feature develops at a higher energy and is highly delocalized and overlaps with the 3d spin-down states which changes the pre-edge intensity. The Mn 4p DOS for both compositions, show considerable difference between the individual p(x), p(y) and p(z)), states. For x=0.5, there is a considerable change in the 4p orbital polarization suggesting changes in the Jahn-Teller effect with doping. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
2-Phenylthiazolin-5-one (5, a thioazlactone) condenses with various aldehydes in the presence of the mild base Mn(II) acetate as catalyst in CH2Cl2 solution. This leads to the corresponding Erlenmeyer reaction products (6) in excellent yields in the case of aromatic aldehydes and moderate yields in others. The mildness of the reaction conditions is apparently enabled by the aromaticity of the (putative) intermediate thiazolone anion. The structure and stereochemistry (Z) of the product derived from i-BuCHO was confirmed by single crystal X-ray diffraction. This study overcomes key limitations of the classical Erlenmeyer synthesis and also introduces the relatively nontoxic Mn(II) acetate as a reagent in heterocyclic chemistry.
Resumo:
Two isomorphous submicron sized metal-organic network compounds, Y-2(PDA)(3)(H2O)1]center dot 2H(2)O (PDA = 1,4-phenylenediacetate), 1 and Y1.8Tb0.2(PDA)(3)(H2O)1]center dot 2H(2)O, Tb@1 have been synthesized by employing solvent assisted liquid grinding followed by heating at 180 degrees C for 1' min and washing with water. Single crystal X-ray data of bulk 1 confirmed a three dimensional porous structure. The structure and morphology of 1 and Tb@1 were systematically characterized by PXRD, TGA, DSC, IR, SEM and EDX analysis. Dehydrated Tb@1 Tb@1'] shows a high intense visible green emission upon exposure to UV light. The green emission of Tb@1' was used for the detection of nitro explosives, such as 2,4,6-trinitrophenol (TNP), 1,3-dinitro benzene (DNB), 2,4-dinitro toluene (DNT), nitro benzene (NB), and 4-nitro toluene (NT) in acetonitrile. The results show that the emission intensity of dehydrated Tb@1' can be quenched by all the nitro analytes used in the present work. Remarkably, Tb@1' exhibited a high efficiency for TNP, DNB and DNT detection with K-SV K-SV = quenching constant based on linear Stern-Volmer plot] values of 70 920, 44 000 and 35 430 M-1, respectively, which are the highest values amongst known metal-organic materials. Using this material submicromolar level (equivalent to 0.18 ppm), a detection of nitro explosives has been achieved.