893 resultados para Zirconium doping
Resumo:
The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS.
Resumo:
The article proposes an alternative approach to policies for preventing doping in cycling, based on in-depth analysis of the functioning of nine of the 40 world professional teams and the careers of the 2,351 riders who were or have been professionals since 2005. The first part shows that the instruments of prevention have been based on a questionable understanding of doping as an individual moral fault, and have not produced the expected results. The second part proposes to analyse the ways in which teams and riders produce their achievments, so as to put forward an alternative to the anti-doping policies used hitherto, which have little impact on riders. The study shows that it is more pertinent to examine the forms of employment and the business models, because these have important effects on cycling professionals' conditions of work. It makes it possible to identify three dimensions of the risk of doping on which organisations can act in their antidoping policies: team organisation, riders' preparation and workload, and the precarity of employment.
Resumo:
microRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs have been proposed as biomarkers of disease, including diagnosis, prognosis, and monitoring of treatment responses. These circulating miRNAs are highly stable in several body fluids, including plasma and serum; hence, in view of their potential use as novel, non-invasive biomarkers, the profiles of circulating miRNAs have been explored in the field of anti-doping. This chapter describes the enormous potential of circulating miRNAs as a new class of biomarkers for the detection of doping substances, and highlights the advantages of measuring these stable species over other methods that have already been implemented in anti-doping regimes. Incorporating longitudinal measurements of circulating miRNAs into the Athlete Biological Passport is proposed as an efficient strategy for the implementation of these new biomarkers. Furthermore, potential challenges related to the transition of measurements of circulating miRNAs from research settings to practical anti-doping applications are presented.
Resumo:
The fight against doping in sports has been governed since 1999 by the World Anti-Doping Agency (WADA), an independent institution behind the implementation of the World Anti-Doping Code (Code). The intent of the Code is to protect clean athletes through the harmonization of anti-doping programs at the international level with special attention to detection, deterrence and prevention of doping.1 A new version of the Code came into force on January 1st 2015, introducing, among other improvements, longer periods of sanctioning for athletes (up to four years) and measures to strengthen the role of anti-doping investigations and intelligence. To ensure optimal harmonization, five International Standards covering different technical aspects of the Code are also currently in force: the List of Prohibited Substances and Methods (List), Testing and Investigations, Laboratories, Therapeutic Use Exemptions (TUE) and Protection of Privacy and Personal Information. Adherence to these standards is mandatory for all anti-doping stakeholders to be compliant with the Code. Among these documents, the eighth version of International Standard for Laboratories (ISL), which also came into effect on January 1st 2015, includes regulations for WADA and ISO/IEC 17025 accreditations and their application for urine and blood sample analysis by anti-doping laboratories.2 Specific requirements are also described in several Technical Documents or Guidelines in which various topics are highlighted such as the identification criteria for gas chromatography (GC) and liquid chromatography (LC) coupled to mass spectrometry (MS) techniques (IDCR), measurements and reporting of endogenous androgenic anabolic agents (EAAS) and analytical requirements for the Athlete Biological Passport (ABP).
Resumo:
Summary: Rhetoric in discussing social problems: The case of doping
Resumo:
This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites.
Resumo:
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry was used for the identification of forty doping agents. The improvement in the specificity was remarkable, allowing the resolution of analytes that could not be done by one-dimensional chromatographic systems. The sensitivity observed for different classes of prohibited substances was clearly below the value required by the World Anti-Doping Agency. In addition time-of-flight mass spectrometry gives full spectrum for all analytes without any interference from the matrix, resulting in selectivity improvements. These results could support the implementation of an exhaustive monitoring approach for hundreds of doping agents in a single injection.
Resumo:
ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Resumo:
Semiempirical calculations at the level of PM3 of theory were carried out to study the structural and electronic properties of C80 and some of its doped derivatives with the elements of group III and V at the level of PM3 of theory. We have selected these elements to be substituted in the fullerene-C80 cage in order to show the effect of such structural change on the electronic properties of the molecules studied. The theoretical IR spectra, some of physical and chemical properties of the molecules studied are obtained and discussed.
Resumo:
Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM) to enhance athletic performance. In such ‘gene doping’, exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO), vascular endothelial growth factor (VEGF), insulin-like growth factor type 1 (IGF-1), myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products) in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.
Resumo:
Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.
Resumo:
The use of certain perfonnance enhancing substances and methods has been defined as a major ethical breach by parties involved in the governance of highperfonnance sport. As a result, elite athletes worldwide are subject to rules and regulations set out in international and national anti-doping policies. Existing literature on the development of policies such as the World Anti-Doping Code and The Canadian antiDoping Program suggests a sport system in which athletes are rarely meaningfully involved in policy development (Houlihan, 2004a). Additionally, it is suggested that this lack of involvement is reflective of a similar lack of involvement in other areas of governance concerning athletes' lives. The purpose ofthis thesis is to examine the history and current state of athletes' involvement in the anti-doping policy process in Canada's high-perfonnance sport system. It includes discussion and analysis of recently conducted interviews with those involved in the policy process as well as an analysis of relevant documents, including anti-doping policies. The findings demonstrate that Canadian athletes have not been significantly involved in the creation of recently developed antidoping policies and that a re-evaluation of current policies is necessary to more fully recognize the reality of athletes' lives in Canada's high-perfonnance sport system and their rights within that system.