1000 resultados para Zircon Data
Resumo:
Lithological horizons have been distinguished in sediments cores from different parts of the Sea of Okhotsk based on primary descriptions of sediments and smear slides, and analyses of contents of both calcium carbonate and organic carbon, and opal. Sediment lithology has been correlated with oxygen isotope records and the standard isotope scale and radiocarbon data by AMS method for three cores studied in detail. This allowed to determine in detail periods of carbonaceous and diatomaceous ooze accumulation in the Sea of Okhotsk. Changes in magnetic susceptibility and grain size composition of sediments have been also compared with oxygen-isotope curves and radiocarbon datings. Obtained results confirm that variations in magnetic susceptibility are related with oxygen-isotope stages and influenced by climatic changes. Tephra interlayers K0, TR, K2, K3 have been identified by mineralogical analyses in all studied cores. Stratigraphic location of these tephra interlayers in detailed studied cores and their radiocarbon ages (8.1, 8.05, 26.8, and about 60 ka, respectively) provided base correlation between the interlayers and volcanic eruptions on the Kamchatka Peninsula and the Kuril Islands. This allows to use the former ones as time markers for deep-sea sediments of the Sea of Okhotsk. New lithostratigraphic and tephrochronologic data obtained allowed to correlate Upper Quaternary sediments from the Sea of Okhotsk.
Resumo:
Absolute ages of plutonic rocks from mid-ocean ridges provide important constraints on the scale, timing and rates of oceanic crustal accretion, yet few such rocks have been absolutely dated. We present 206Pb/238U SHRIMP zircon ages from two ODP Drill Holes and a surface sample from Atlantis Bank on the Southwest Indian Ridge. We report ten new sample ages from 26-1430 m in ODP Hole 735B, and one from 57 m in ODP Hole 1105A. Including a previously published age, eleven samples from Hole 735B yield 206Pb/238U zircon crystallization ages that are the same, within error, overlap with the estimated magnetic age and are inferred to date the main period of crustal growth, the average age of analyses is 11.99 ± 0.12 Ma. Any differences in the ages of magmatic series and/or tectonic blocks within Hole 735B are unresolvable and eight well-constrained ages vary from 11.86 ± 0.20 Ma to 12.13 ± 0.21 Ma, a range of 0.27 ± 0.29 Ma, consistent with the duration of crustal accretion observed at the Mid-Atlantic Ridge. An age of 11.87 ± 0.23 Ma from Hole 1105A is within error of ages from Hole 735B and permits previous correlations made between zones of oxide-rich gabbros in each hole. Pb/U zircon ages > 0.5 Ma younger than the magnetic age are recorded in at least three samples from Atlantis Bank, one from Hole 735B and two collected along a fault scarp to the East. These young ages may date one or more off-axis events previously suggested from thermochronologic data and support the interpretation of a complex geological history following crustal accretion at Atlantis Bank. Together with results from the surface of Atlantis Bank, dating has shown that while the majority of Pb/U SHRIMP zircon ages record the short-lived (< 0.5 Ma) phase of crustal accretion on-axis, results from several samples precede and post-date this period by > 1 Ma suggesting a complex and prolonged magmatic/tectonic history for the crust at Atlantis Bank.
Resumo:
The oldest known bona fide succession of elastic metasediments Occurs in the Isua Greenstone Belt. SW Greenland and consists of a variety of mica schists and rare metaconglomerates. The metasediments are in direct contact with a felsic metavolcanic lithology that has previously been dated to 3.71 Ga. Based on trace element geochemical data for 30 metasediments, we selected the six samples with highest Zr concentrations for zircon extraction. These samples all yielded very few or no zircon, Those extracted from mica schists yielded ion probe U/Pb ages between 3.70 and 3,71 Ga. One metaconglomerate sample yielded just a single zircon of 3.74 Ga age. The mica schist hosted zircons have U/Pb ages. Th/U ratios, REE patterns and Eu anomalies indistinguishable from zircon in the adjacent 3.71 Ga felsic metavolcanic unit. Trace element modelling requires the bulk of material in the metasediments to be derived from variably weathered mafic lithologies but some metasediments contain substantial contribution from more evolved source lithologies. The paucity of zircon in the mica schists is thus explained by incorporation of material from largely zircon-free volcanic lithologies. The absence of older zircon in the mica schists and the preponderance of mafic source material imply intense, mainly basaltic resurfacing of the early Earth. The implications of this process are discussed, Thermal considerations suggest that horizontal growth of Hadean crust by addition of mafic ultramafic lavas must have triggered self-reorganisation of the protocrust by remelting. Reworking oft Hadean crust may have been aided by burial of hydrated (weathered) metabasalt due to semi-continuous addition of new voluminous basalt Outpouring,;, This process Causes a bias towards eruption of Zr-saturated partial melts at the surface with O-isotope corn posit ion,, potentially different from the mantle. The oldest zircons hosted in sediments would have been buried to substantial depth or formed in plutons that crystallised at some depth from which it took hundreds of millions of years for them to be exhumed and incorporated into much younger sediments. (C) 2005 Elsevier B.V.All rights reserved.
Resumo:
CL imaging and U–Th–Pb data for a population of zircons from two of the Évora Massif granitoids (Ossa-Morena Zone, SW Iberia) show that both calc-alkaline granitoids have zircon populations dominated by grains with cores and rims either showing or not showing differences in Th/U ratio, and having ages in the range ca. 350–335 Ma (Early Carboniferous). Multistage crystallization of zircon is revealed in two main growth stages (ca. 344–342 Ma and ca. 336–335 Ma), well represented by morphologically complex zircons with cores and rims with different ages and different Th/U ratios that can be explained by: (1) crystallization from melts with different compositions (felsic peraluminous to felsic-intermediate metaluminous; 0.001 Th/U ratio < 0.5) and (2) transient temperature fluctuations in a system where anatectic felsic melts periodically underwent injection of more mafic magmas at higher temperatures. The two studied calc-alkaline granitoids do not include inherited zircons (pre-Carboniferous), probably because they were formed at the highest grade of metamorphism (T 837 °C; granulite facies) and/or because they were derived from inheritance-poor felsic and mafic rocks from a previous cycle, as suggested by the internal structures of zircon cores. These Variscan magmatic rocks with crystallization ages estimated at ca. 336–335 Ma are spatially and temporally related to high-temperature metamorphism, anatexis, processes of interaction between crustal- and mantle-derived magmas and intra-orogenic extension that acted in SW Iberia during the Early Carboniferous.
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.