986 resultados para Zebrafish -- embryology -- genetics -- immunology -- metabolism
Resumo:
Chromatin insulators are defined as transcriptionally neutral elements that prevent negative or positive influence from extending across chromatin to a promoter. Here we show that yeast subtelomeric anti-silencing regions behave as boundaries to telomere-driven silencing and also allow discontinuous propagation of silent chromatin. These two facets of insulator activity, boundary and silencing discontinuity, can be recapitulated by tethering various transcription activation domains to tandem sites on DNA. Importantly, we show that these insulator activities do not involve direct transcriptional activation of the reporter promoter. These findings predict that certain promoters behave as insulators and partition genomes in functionally independent domains.
Resumo:
The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.
Resumo:
Tolerance is a poorly understood phenomenon that allows bacteria exposed to a bactericidal antibiotic to stop their growth and withstand drug-induced killing. This survival ability has been implicated in antibiotic treatment failures. Here, we describe a single nucleotide mutation (tol1) in a tolerant Streptococcus gordonii strain (Tol1) that is sufficient to provide tolerance in vitro and in vivo. It induces a proline-to-arginine substitution (P483R) in the homodimerization interface of enzyme I of the sugar phosphotransferase system, resulting in diminished sugar uptake. In vitro, the susceptible wild-type (WT) and Tol1 cultures lost 4.5 and 0.6 log(10) CFU/ml, respectively, after 24 h of penicillin exposure. The introduction of tol1 into the WT (WT P483R) conferred tolerance (a loss of 0.7 log(10) CFU/ml/24 h), whereas restitution of the parent sequence in Tol1 (Tol1 R483P) restored antibiotic susceptibility. Moreover, penicillin treatment of rats in an experimental model of endocarditis showed a complete inversion in the outcome, with a failure of therapy in rats infected with WT P483R and the complete disappearance of bacteria in animals infected with Tol1 R483P.
Resumo:
Clathrin-dependent endocytosis is mediated by a tightly regulated network of molecular interactions that provides essential protein-protein and protein-lipid binding activities. Here we report the hydrolysis of the alpha- and beta2-subunits of the tetrameric adaptor protein complex 2 by calpain. Calcium-dependent alpha- and beta2-adaptin hydrolysis was observed in several rat tissues, including brain and primary neuronal cultures. Neuronal alpha- and beta2-adaptin cleavage was inducible by glutamate stimulation and was accompanied by the decreased endocytosis of transferrin. Heterologous expression of truncated forms of the beta2-adaptin subunit significantly decreased the membrane recruitment of clathrin and inhibited clathrin-mediated receptor endocytosis. Moreover, the presence of truncated beta2-adaptin sensitized neurons to glutamate receptor-mediated excitotoxicity. Proteolysis of alpha- and beta2-adaptins, as well as the accessory clathrin adaptors epsin 1, adaptor protein 180, and the clathrin assembly lymphoid myeloid leukemia protein, was detected in brain tissues after experimentally induced ischemia and in cases of human Alzheimer disease. The present study further clarifies the central role of calpain in regulating clathrin-dependent endocytosis and provides evidence for a novel mechanism through which calpain activation may promote neurodegeneration: the sensitization of cells to glutamate-mediated excitotoxicity via the decreased internalization of surface receptors.
Resumo:
Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
Resumo:
The provenance, half-life and biological activity of malondialdehyde (MDA) were investigated in Arabidopsis thaliana. We provide genetic confirmation of the hypothesis that MDA originates from fatty acids containing more than two methylene-linked double bonds, showing that tri-unsaturated fatty acids are the in vivo source of up to 75% of MDA. The abundance of the combined pool of free and reversibly bound MDA did not change dramatically in stress, although a significant increase in the free MDA pool under oxidative conditions was observed. The half-life of infiltrated MDA indicated rapid metabolic turnover/sequestration. Exposure of plants to low levels of MDA using a recently developed protocol powerfully upregulated many genes on a cDNA microarray with a bias towards those implicated in abiotic/environmental stress (e.g. ROF1 and XERO2). Remarkably, and in contrast to the activities of other reactive electrophile species (i.e. small vinyl ketones), none of the pathogenesis-related (PR) genes tested responded to MDA. The use of structural mimics of MDA isomers suggested that the propensity of the molecule to act as a cross-linking/modifying reagent might contribute to the activation of gene expression. Changes in the concentration/localisation of unbound MDA in vivo could strongly affect stress-related transcription.
Resumo:
Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model.
Resumo:
The SV channel encoded by the TPC1 gene represents a Ca(2+)- and voltage-dependent vacuolar cation channel. Point mutation D454N within TPC1, named fou2 for fatty acid oxygenation upregulated 2, results in increased synthesis of the stress hormone jasmonate. As wounding causes Ca2+ signals and cytosolic Ca2+ is required for SV channel function, we here studied the Ca(2+)-dependent properties of this major vacuolar cation channel with Arabidopsis thaliana mesophyll vacuoles. In patch clamp measurements, wild-type and fou2 SV channels did not exhibit differences in cytosolic Ca2+ sensitivity and Ca2+ impermeability. K+ fluxes through wild-type TPC1 were reduced or even completely faded away when vacuolar Ca2+ reached the 0.1-mm level. The fou2 protein under these conditions, however, remained active. Thus, D454N seems to be part of a luminal Ca2+ recognition site. Thereby the SV channel mutant gains tolerance towards elevated luminal Ca2+. A three-fold higher vacuolar Ca/K ratio in the fou2 mutant relative to wild-type plants seems to indicate that fou2 can accumulate higher levels of vacuolar Ca(2+) before SV channel activity vanishes and K(+) homeostasis is impaired. In response to wounding fou2 plants might thus elicit strong vacuole-derived cytosolic Ca2+ signals resulting in overproduction of jasmonate.
Resumo:
The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na(+)-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the alpha, beta, and gamma ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of alpha, beta, and gamma ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (beta R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.
Resumo:
Virulence factors of Pseudomonas aeruginosa include hydrogen cyanide (HCN). This secondary metabolite is maximally produced at low oxygen tension and high cell densities during the transition from exponential to stationary growth phase. The hcnABC genes encoding HCN synthase were identified on a genomic fragment complementing an HCN-deficient mutant of P. aeruginosa PAO1. The hcnA promoter was found to be controlled by the FNR-like anaerobic regulator ANR and by the quorum-sensing regulators LasR and RhlR. Primer extension analysis revealed two transcription starts, T1 and T2, separated by 29 bp. Their function was confirmed by transcriptional lacZ fusions. The promoter sequence displayed an FNR/ANR box at -42.5 bp upstream of T2 and a lux box centered around -42.5 bp upstream of T1. Expression of the hcn genes was completely abolished when this lux box was deleted or inactivated by two point mutations in conserved nucleotides. The lux box was recognized by both LasR [activated by N-(oxododecanoyl)-homoserine lactone] and RhlR (activated by N-butanoyl-homoserine lactone), as shown by expression experiments performed in quorum-sensing-defective P. aeruginosa mutants and in the N-acyl-homoserine lactone-negative heterologous host P. fluorescens CHA0. A second, less conserved lux box lying 160 bp upstream of T1 seems to account for enhanced quorum-sensing-dependent expression. Without LasR and RhlR, ANR could not activate the hcn promoter. Together, these data indicate that expression of the hcn promoter from T1 can occur under quorum-sensing control alone. Enhanced expression from T2 appears to rely on a synergistic action between LasR, RhlR, and ANR.
Resumo:
Growing experimental evidence indicates that, in addition to the physical virion components, the non-structural proteins of hepatitis C virus (HCV) are intimately involved in orchestrating morphogenesis. Since it is dispensable for HCV RNA replication, the non-structural viral protein NS2 is suggested to play a central role in HCV particle assembly. However, despite genetic evidences, we have almost no understanding about NS2 protein-protein interactions and their role in the production of infectious particles. Here, we used co-immunoprecipitation and/or fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy analyses to study the interactions between NS2 and the viroporin p7 and the HCV glycoprotein E2. In addition, we used alanine scanning insertion mutagenesis as well as other mutations in the context of an infectious virus to investigate the functional role of NS2 in HCV assembly. Finally, the subcellular localization of NS2 and several mutants was analyzed by confocal microscopy. Our data demonstrate molecular interactions between NS2 and p7 and E2. Furthermore, we show that, in the context of an infectious virus, NS2 accumulates over time in endoplasmic reticulum-derived dotted structures and colocalizes with both the envelope glycoproteins and components of the replication complex in close proximity to the HCV core protein and lipid droplets, a location that has been shown to be essential for virus assembly. We show that NS2 transmembrane region is crucial for both E2 interaction and subcellular localization. Moreover, specific mutations in core, envelope proteins, p7 and NS5A reported to abolish viral assembly changed the subcellular localization of NS2 protein. Together, these observations indicate that NS2 protein attracts the envelope proteins at the assembly site and it crosstalks with non-structural proteins for virus assembly.
Resumo:
Individuals carrying BRCA2 mutations are predisposed to breast and ovarian cancers. Here, we show that BRCA2 plays a dual role in regulating the actions of RAD51, a protein essential for homologous recombination and DNA repair. First, interactions between RAD51 and the BRC3 or BRC4 regions of BRCA2 block nucleoprotein filament formation by RAD51. Alterations to the BRC3 region that mimic cancer-associated BRCA2 mutations fail to exhibit this effect. Second, transport of RAD51 to the nucleus is defective in cells carrying a cancer-associated BRCA2 truncation. Thus, BRCA2 regulates both the intracellular localization and DNA binding ability of RAD51. Loss of these controls following BRCA2 inactivation may be a key event leading to genomic instability and tumorigenesis.
Resumo:
Plants are faced with many of the same problems as animals-a need for regulation of metabolic processes and reproduction and for defense against enemies. Jasmonates in plants serve key roles in gene and metabolic regulation, defense, responses to trauma, reproduction, and possibly communication. Some remarkable features of plant responses, such as production of repellent volatiles as a defense against herbivorous insects, or the massive transcriptional reprogramming that occurs in response to wounding, are under the control of the jasmonate pathway. Details of the jasmonate signaling pathway are currently at the center of active research that is generating exciting results. The Jasmonate Biochemical Pathway at the STKE Connections Maps is designed to present and keep pace with these developments.
Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet.
Resumo:
OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.