830 resultados para Yttrium alloys
Resumo:
Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000-1400 rpm and traversing speed of 80-240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al-Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (similar to 98% of that of 6061 alloy), which is also maximum with respect to others. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
From the quaternary Ti-Zr-Hf-Ni phase diagram. the cross-section at 20 at % Ni was selected for investigation. The icosahedral quasicrystalline, crystalline and amorphous phases were observed to form in nine kinds of rapidly solidified (TixZryHfz)(80)Ni-20 (x + y + z = 1) alloys at different compositions. The quasilattice constants of 0.519 and 0.531 nm were obtained for the icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 and Ti20Zr40Hf20Ni20 alloys. respectively. The icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 alloy especially is thermodynamically stable. The supercooled liquid region of the Ti20Zr20Hf40Ni20 glassy alloy reached 64 K. From these results a comparison of quasicrystal-forming and glass-forming abilities, was carried out. The quasicrystal-forming ability was reduced and glass-forming ability was improved with an increase in Hf and Zr contents in the (TixZryHfz)(80)Ni-20 alloys. On the other hand. an increase in Ti content caused an improvement in quasicrystal-forming ability.
Resumo:
Dimethyl sulphoxide complexes of lanthanide and yttrium nitrates of the general formula M(DMSO)n(NO3)3 where M = La, Ce, Pr, Nd, Sm or Gd; n = 4 and M = Y, Ho or Yb; n = 3 have been isolated and characterized. The i.r. data besides excluding the presence of D3h nitrate, reveal co-ordination through the oxygen atom of the dimethyl sulphoxide. The complexes are monomeric in acetonitrile. Molecular conductance data in acetone, acetonitrile, dimethyl formamide and dimethyl sulphoxide suggest a co-ordination number of eight for the lighter lanthanides and seven for yttrium and the heavier lanthanides.
Resumo:
The Ramberg-Osgood relation which adequately describes the stress-strain curve of a strain-hardening material is extended to formulate the constitutive laws for creep. The constitutive laws which describe primary creep adequately are extended to secondary creep. The results are verified for the case of R.R. 59 at 200°C, Nimonic 80A and Nimonic 90 alloys at 750°C.
Resumo:
The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.
Resumo:
Resistometric studies of isochronal and isothermal annealing of an Al-0.64 at.% Ag alloy have given a value of 0.13 ± 0.02 eV for the silver-vacancy binding energy and 0.55 ± 0.03 eV for the migration energy of solute atoms.
Resumo:
Superplastic materials exhibit very large elongations to failure,typically >500%, and this enables commercial forming of complex shaped components at slow strain rates of similar to 10(-4) s(-1). We report extraordinary record superplastic elongations to failure of up to 5300% at both high strain rates and low temperature in electrodeposited nanocrystalline Ni and some Ni alloys. Superplasticity is not related to the presence of sulfur or a low melting phase at grain boundaries. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr41.25Ti13.75Cu12.5Ni10Be22.5 (commercially designated as Vitreloy 1 or Vit1) and Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys.
Resumo:
The activity of gallium in liquid Ga-Te alloys has been measured at 1120 K using a solid state galvanic cell incorporating yttria-stabilized thoria as the solid electrolyte. The cell can be schematically represented as (−) W,Re,Ga(1)+Ga2O3(s)|(Y2O3) ThO2|Ga-Te(1) + Ga2O3(s), Re, W (+) The activity of tellurium was derived by Gibbs-Duhem integration. The activity of gallium shows negative deviation from Raoult's law for XGa < 0.6 and positive deviation from ideality for XGa > 0.6. The activity of gallium was constant in the composition range 0.73 < XGa < 0.89, indicating liquid state immiscibility in this region. The Gibbs energy of mixing and the concentration-concentration structure factor at long wavelength limit show a minimum at XGa ≈ 0.4, suggesting strong interactions in the liquid phase with formation of ‘Ga2Te3‘-type complexes