236 resultados para Xenograft
Resumo:
Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose disease is resistant to classical androgen ablation therapies.
Resumo:
Photodynamic therapy (PDT) is a new therapeutic approach for the palliative treatment of malignant bile duct obstruction. In this study, we designed photosensitizer-embedded self-expanding nonvascular metal stent (PDT-stent) which allows repeatable photodynamic treatment of cholangiocarcinoma without systemic injection of photosensitizer. Polymeric photosensitizer (pullulan acetate-conjugated pheophorbide A; PPA) was incorporated in self-expanding nonvascular metal stent. Residence of PPA in the stent was estimated in buffer solution and subcutaneous implantation on mouse. Photodynamic activity of PDT-stent was evaluated through laserexposure on stent-layered tumor cell lines, HCT-116 tumor-xenograft mouse models and endoscopic intervention of PDT-stent on bile duct of mini pigs. Photo-fluorescence imaging of the PDT-stent demonstrated homogeneous embedding of polymeric Pheo-A (PPA) on stent membrane. PDT-stent sustained its photodynamic activities at least for 2 month. And which implies repeatable endoscopic PDT is possible after stent emplacement. The PDT-stent after light exposure successfully generated cytotoxic singlet oxygen in the surrounding tissues, inducing apoptotic degradation of tumor cells and regression of xenograft tumors on mouse models. Endoscopic biliary in-stent photodynamic treatments on minipigs also suggested the potential efficacy of PDT-stent on cholangiocarcinoma. In vivo and in vitro studies revealed our PDT-stent, allows repeatable endoscopic biliary PDT, has the potential for the combination therapy (stent plus PDT) of cholangiocarcinoma. © 2014 Elsevier Ltd.
Resumo:
Purpose: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects.
Experimental Design: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies.
Results: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S–mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors.
Conclusions: These results show that blocking the invasive and proangiogenic effects of cathepsin S with antibody inhibitors may have therapeutic utility upon further preclinical and clinical evaluation.
Resumo:
BACKGROUND: Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development.
METHODOLOGY/PRINCIPAL FINDINGS: Cathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.
CONCLUSIONS/SIGNIFICANCE: Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.
Resumo:
Purpose: Antiangiogenic therapies can be an important adjunct to the management of many malignancies. Here we investigated a novel protein, FKBPL, and peptide derivative for their antiangiogenic activity and mechanism of action.
Experimental Design: Recombinant FKBPL (rFKBPL) and its peptide derivative were assessed in a range of human microvascular endothelial cell (HMEC-1) assays in vitro. Their ability to inhibit proliferation, migration, and Matrigel-dependent tubule formation was determined. They were further evaluated in an ex vivo rat model of neovascularization and in two in vivo mouse models of angiogenesis, that is, the sponge implantation and the intravital microscopy models. Antitumor efficacy was determined in two human tumor xenograft models grown in severe compromised immunodeficient (SCID) mice. Finally, the dependence of peptide on CD44 was determined using a CD44-targeted siRNA approach or in cell lines of differing CD44 status.
Results: rFKBPL inhibited endothelial cell migration, tubule formation, and microvessel formation in vitro and in vivo. The region responsible for FKBPL's antiangiogenic activity was identified, and a 24-amino acid peptide (AD-01) spanning this sequence was synthesized. It was potently antiangiogenic and inhibited growth in two human tumor xenograft models (DU145 and MDA-231) when administered systemically, either on its own or in combination with docetaxel. The antiangiogenic activity of FKBPL and AD-01 was dependent on the cell-surface receptor CD44, and signaling downstream of this receptor promoted an antimigratory phenotype.
Conclusion: FKBPL and its peptide derivative AD-01 have potent antiangiogenic activity. Thus, these agents offer the potential of an attractive new approach to antiangiogenic therapy.
Resumo:
Understanding the determinants of resistance of 5-fluorouracil (5FU) is of significant value to optimizing administration of the drug, and introducing novel agents and treatment strategies. Here, the expression of 92 genes involved in 5FU transport, metabolism, co-factor (folate) metabolism and downstream effects was measured by real-time PCR low density arrays in 14 patient-derived colorectal cancer xenografts characterized for 5FU resistance. Candidate gene function was tested by siRNA and uridine modulation, and immunoblotting, apoptosis and cell cycle analysis. Predictive significance was tested by immunohistochemistry of tumors from 125 stage III colorectal cancer patients treated with and without 5FU. Of 8 genes significantly differentially expressed between 5FU sensitive and resistant xenograft tumors, CTPS2 was the gene with the highest probability of differential expression (p = 0.008). Reduction of CTPS2 expression by siRNA increased the resistance of colorectal cancer cell lines DLD1 and LS174T to 5FU and its analog, FUDR. CTPS2 siRNA significantly reduced cell S-phase accumulation and apoptosis following 5FU treatment. Exposure of cells to uridine, a precursor to the CTPS2 substrate uridine triphosphate, also increased 5FU resistance. Patients with low CTPS2 did not gain a survival benefit from 5FU treatment (p = 0.072), while those with high expression did (p = 0.003). Low CTPS2 expression may be a rationally-based determinant of 5FU resistance.
Resumo:
Understanding the molecular etiology and heterogeneity of disease has a direct effect on cancer therapeutics. To identify novel molecular changes associated with breast cancer progression, we conducted phosphoproteomics of the MCF10AT model comprising isogenic, ErbB2- and ErbB3-positive, xenograft-derived cell lines that mimic different stages of breast cancer. Using in vitro animal model and clinical breast samples, our study revealed a marked reduction of epidermal growth factor receptor (EGFR) expression with breast cancer progression. Such diminution of EGFR expression was associated with increased resistance to Gefitinib/Iressa in vitro. Fluorescence in situ hybridization showed that loss of EGFR gene copy number was one of the key mechanisms behind the low/null expression of EGFR in clinical breast tumors. Statistical analysis on the immunohistochemistry data of EGFR expression from 93 matched normal and breast tumor samples showed that (a) diminished EGFR expression could. be detected as early as in the preneoplastic lesion (ductal carcinoma in situ) and this culminated in invasive carcinomas; (b) EGFR expression levels could distinguish between normal tissue versus carcinoma in situ and invasive carcinoma with high statistical significance (P
Resumo:
We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.
Resumo:
In this paper, we report the synthesis and biological activity of a series of dihydroisocoumarin analogues Conjugated with fatty acids, alcohols, or amines, of varying hydrocarbon chain length and degree of unsaturation, to (he dihydroisocoumarins, kigelin and mellein, at the C-7 and C-8 positions on the core dihydroisocoumarin structure. These compounds were evaluated for their antiproliferative activity against human breast cancer (MCF-7 and MDA-MB-468) and melanoma cells (SK-MEL-28 and Malme-3M) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Two compounds Conjugated with gamma-linolenyl alcohol (18:3 n-6) demonstrated potent antiproliferative activity in vitro with one of these 4-hydroxy-3-oxo-1.3-dihydro-isobenzofuran-5-carboxylic acid octadeca-6,9,12-trienyl ester, demonstrating significant antitumor activity in vivo ill a number of human tumor xenograft models.
Resumo:
FK506 binding protein-like (FKBPL) and its peptide derivatives exert potent anti-angiogenic activity and and control tumour growth in xenograft models, when administered exogenously. However, the role of endogenous FKBPL in angiogenesis is not well characterised. Here we investigated the molecular effects of the endogenous protein and its peptide derivative, AD-01, leading to their anti-migratory activity. Inhibition of secreted FKBPL using a blocking antibody or siRNA-mediated knockdown of FKBPL accelerated the migration of human microvascular endothelial cells (HMEC-1). Furthermore, MDA-MB-231 tumour cells stably overexpressing FKBPL inhibited tumour vascular development suggesting that FKBPL secreted from tumour cells could inhibit angiogenesis. Whilst FKBPL and AD-01 target CD44, the nature of this interaction is not known and here we have further interrogated this aspect. We have demonstrated that FKBPL and AD-01 bind to the CD44 receptor and inhibit tumour cell migration in a CD44 dependant manner; CD44 knockdown abrogated AD-01 binding as well as its anti-migratory activity. Interestingly, FKBPL overexpression and knockdown or treatment with AD-01, regulated CD44 expression, suggesting a co-regulatory pathway for these two proteins. Downstream of CD44, alterations in the actin cytoskeleton, indicated by intense cortical actin staining and a lack of cell spreading and communication were observed following treatment with AD-01, explaining the anti-migratory phenotype. Concomitantly, AD-01 inhibited Rac-1 activity, up-regulated RhoA and the actin binding proteins, profilin and vinculin. Thus the anti-angiogenic protein, FKBPL, and AD-01, offer a promising and alternative approach for targeting both CD44 positive tumours and vasculature networks.
Resumo:
Pancreatic cancer remains as one of the most deadly cancers, and responds poorly to current therapies. The prognosis is extremely poor, with a 5-year survival of less than 5%. Therefore, search for new effective therapeutic drugs is of pivotal need and urgency to improve treatment of this incurable malignancy. Synthetic alkyl-lysophospholipid analogs (ALPs) constitute a heterogeneous group of unnatural lipids that promote apoptosis in a wide variety of tumor cells. In this study, we found that the anticancer drug edelfosine was the most potent ALP in killing human pancreatic cancer cells, targeting endoplasmic reticulum (ER). Edelfosine was taken up in significant amounts by pancreatic cancer cells and induced caspase-and mitochondrial-mediated apoptosis. Pancreatic cancer cells show a prominent ER and edelfosine accumulated in this subcellular structure, inducing a potent ER stress response, with caspase-4, BAP31 and c-Jun NH 2-terminal kinase (JNK) activation, CHOP/GADD153 upregulation and phosphorylation of eukaryotic translation initiation factor 2 a-subunit that eventually led to cell death. Oral administration of edelfosine in xenograft mouse models of pancreatic cancer induced a significant regression in tumor growth and an increase in apoptotic index, as assessed by TUNEL assay and caspase-3 activation in the tumor sections. The ER stress-associated marker CHOP/GADD153 was visualized in the pancreatic tumor isolated from edelfosine-treated mice, indicating a strong in vivo ER stress response. These results suggest that edelfosine exerts its pro-apoptotic action in pancreatic cancer cells, both in vitro and in vivo, through its accumulation in the ER, which leads to ER stress and apoptosis. Thus, we propose that the ER could be a key target in pancreatic cancer, and edelfosine may constitute a prototype for the development of a new class of antitumor drugs targeting the ER. © 2012 Macmillan Publishers Limited All rights reserved.
Resumo:
Activation of the MET oncogenic pathway has been implicated in the development of aggressive cancers that are difficult to treat with current chemotherapies. This has led to an increased interest in developing novel therapies that target the MET pathway. However, most existing drug modalities are confounded by their inability to specifically target and/or antagonize this pathway. Anticalins, a novel class of monovalent small biologics, are hypothesized to be "fit for purpose" for developing highly specific and potent antagonists of cancer pathways. Here, we describe a monovalent full MET antagonist, PRS-110, displaying efficacy in both ligand-dependent and ligand-independent cancer models. PRS-110 specifically binds to MET with high affinity and blocks hepatocyte growth factor (HGF) interaction. Phosphorylation assays show that PRS-110 efficiently inhibits HGF-mediated signaling of MET receptor and has no agonistic activity. Confocal microscopy shows that PRS-110 results in the trafficking of MET to late endosomal/lysosomal compartments in the absence of HGF. In vivo administration of PRS-110 resulted in significant, dose-dependent tumor growth inhibition in ligand-dependent (U87-MG) and ligand-independent (Caki-1) xenograft models. Analysis of MET protein levels on xenograft biopsy samples show a significant reduction in total MET following therapy with PRS-110 supporting its ligand-independent mechanism of action. Taken together, these data indicate that the MET inhibitor PRS-110 has potentially broad anticancer activity that warrants evaluation in patients.
Resumo:
Ewing's sarcoma (ES) is the second most common bone cancer in children and young people. Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) is the prototype of a family of synthetic antitumor compounds, collectively known as alkylphospholipid analogs (APLs). We have found that APLs ranked edelfosine>perifosine>erucylphosphocholine>miltefosine for their capacity to promote apoptosis in ES cells. Edelfosine accumulated in the endoplasmic reticulum (ER) and triggered an ER stress response that eventually led to caspase-dependent apoptosis in ES cells. This apoptotic response involved mitochondrial-mediated processes, with cytochrome c release, caspase-9 activation and generation of reactive oxygen species. Edelfosine-induced apoptosis was also dependent on sustained c-Jun NH2-terminal kinase activation. Oral administration of edelfosine showed a potent in vivo antitumor activity in an ES xenograft animal model. Histochemical staining gave evidence for ER stress response and apoptosis in the ES tumors isolated from edelfosine-treated mice. Edelfosine showed a preferential action on ES tumor cells as compared to non-transformed osteoblasts, and appeared to be well suited for combination therapy regimens. These results demonstrate in vitro and in vivo antitumor activity of edelfosine against ES cells that is mediated by caspase activation and ER stress, and provide the proof of concept for a putative edelfosine-and ER stress-mediated approach for ES treatment.
Resumo:
CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.
CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.
Resumo:
Despite advancement in breast cancer treatment, 30% of patients with early breast cancers experience relapse with distant metastasis. It is a challenge to identify patients at risk for relapse; therefore, the identification of markers and therapeutic targets for metastatic breast cancers is imperative. Here, we identified DP103 as a biomarker and metastasis-driving oncogene in human breast cancers and determined that DP103 elevates matrix metallopeptidase 9 (MMP9) levels, which are associated with metastasis and invasion through activation of NF-κB. In turn, NF-κB signaling positively activated DP103 expression. Furthermore, DP103 enhanced TGF-β-activated kinase-1 (TAK1) phosphorylation of NF-κB-activating IκB kinase 2 (IKK2), leading to increased NF-κB activity. Reduction of DP103 expression in invasive breast cancer cells reduced phosphorylation of IKK2, abrogated NF-κB-mediated MMP9 expression, and impeded metastasis in a murine xenograft model. In breast cancer patient tissues, elevated levels of DP103 correlated with enhanced MMP9, reduced overall survival, and reduced survival after relapse. Together, these data indicate that a positive DP103/NF-κB feedback loop promotes constitutive NF-κB activation in invasive breast cancers and activation of this pathway is linked to cancer progression and the acquisition of chemotherapy resistance. Furthermore, our results suggest that DP103 has potential as a therapeutic target for breast cancer treatment.