981 resultados para X-ray computed tomography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High throughput next generation sequencing, together with advanced molecular methods, has considerably enhanced the field of food microbiology. By overcoming biases associated with culture dependant approaches, it has become possible to achieve novel insights into the nature of food-borne microbial communities. In this thesis, several different sequencing-based approaches were applied with a view to better understanding microbe associated quality defects in cheese. Initially, a literature review provides an overview of microbe-associated cheese quality defects as well as molecular methods for profiling complex microbial communities. Following this, 16S rRNA sequencing revealed temporal and spatial differences in microbial composition due to the time during the production day that specific commercial cheeses were manufactured. A novel Ion PGM sequencing approach, focusing on decarboxylase genes rather than 16S rRNA genes, was then successfully employed to profile the biogenic amine producing cohort of a series of artisanal cheeses. Investigations into the phenomenon of cheese pinking formed the basis of a joint 16S rRNA and whole genome shotgun sequencing approach, leading to the identification of Thermus species and, more specifically, the pathway involved in production of lycopene, a red coloured carotenoid. Finally, using a more traditional approach, the effect of addition of a facultatively heterofermentative Lactobacillus (Lactobacillus casei) to a Swiss-type cheese, in which starter activity was compromised, was investigated from the perspective of its ability to promote gas defects and irregular eye formation. X-ray computed tomography was used to visualise, using a non-destructive method, the consequences of the undesirable gas formation that resulted. Ultimately this thesis has demonstrated that the application of molecular techniques, such as next generation sequencing, can provide a detailed insight into defect-causing microbial populations present and thereby may underpin approaches to optimise the quality and consistency of a wide variety of cheeses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A record of deep-sea calcite saturation (D[CO3**-2]), derived from X-ray computed tomography-based foraminifer dissolution index, XDX, was constructed for the past 150 ka for a core from the deep (4157 m) tropical western Indian Ocean. G. sacculifer and N. dutertrei recorded a similar dissolution history, consistent with the process of calcite compensation. Peaks in calcite saturation (~15 µmol/kg higher than the present-day value) occurred during deglaciations and early in MIS 3. Dissolution maxima coincided with transitions to colder stages. The mass record of G. sacculifer better indicated preservation than did that of N. dutertrei or G. ruber. Dissolution-corrected Mg/Ca-derived SST records, like other SST records from marginal Indian Ocean sites, showed coolest temperatures of the last 150 ka in early MIS 3, when mixed layer temperatures were ~4°C lower than present SST. Temperatures recorded by N. dutertrei showed the thermocline to be ~4°C colder in MIS 3 compared to the Holocene (8 ka B.P.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subduction of oceanic plates regulates crustal growth, influences arc volcanism, and refertilizes the mantle. Continental growth occurs by subduction of crustal material (seawater components, marine sediments, and basaltic crust). The geochemical and physical evolution of the Earth's crust depends, in large part, on the fate of subducted material at convergent margins (Armstrong, 1968, doi:10.1029/RG006i002p00175; Karig and Kay, 1981, 10.1098/rsta.1981.0108). The crustal material on the downgoing plate is recycled to various levels in the subduction zone. The recycling process that takes place in the "Subduction Factory" is difficult to observe directly but is clearly illuminated using chemical tracers. Von Huene and Scholl (1991, doi:10.1029/91RG00969) and Plank and Langmuir (1993, doi:10.1038/362739a0) preliminarily calculated a large flux of subducted materials. By mass balancing the chemical tracers and measuring the fractionations that occur between them, the Subduction Factory work and the effect on the Earth's evolution can be estimated. In order to elucidate this mass balance, Ocean Drilling Program Leg 185 drilled two deepwater shales into the oceanic crust situated in the Mariana-Izu Trenches and recovered core samples of incoming oceanic crust. The calculations of mass circulation in the subduction zone, however, did not take into account the mass transfer properties within subducted oceanic crust, although the dewatering fluid and diffused ions may play an important role in various activities such as seismogeneity, serpentine diapiring, and arc volcanism. Thus, this paper focuses on the quantitative measurements of the physical and mass transfer properties of subducted oceanic crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray computed tomography (CT) provides an insight into the progression of dissolution in the tests of planktonic foraminifera. Four species of foraminifera (G. ruber [white], G. sacculifer, N. dutertrei and P. obliquiloculata) from Pacific, Atlantic and Indian Ocean core-top samples were examined by CT and SEM. Inner chamber walls began to dissolve at Delta[CO3**2-] values of 12-14 µmol/kg. Close to the calcite saturation horizon, dissolution and precipitation of calcite may occur simultaneously. Inner calcite of G. sacculifer, N. dutertrei and P. obliquiloculata from such sites appeared altered or replaced, whereas outer crust calcite was dense with no pores. Unlike the other species, there was no distinction between inner and outer calcite in CT scans of G. ruber. Empty calcite crusts of N. dutertrei and P. obliquiloculata were most resistant to dissolution and were present in samples where Delta[CO3**2-] ~ -20 µmol/kg. Five stages of preservation were identified in CT scans, and an empirical dissolution index, XDX, was established. XDX appears to be insensitive to initial test mass. Mass loss in response to dissolution was similar between species and sites at ~ 0.4 µg/µmol/kg. We provide calibrations to estimate Delta[CO3**2-] and initial test mass from XDX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mg/Ca and d18O data for four species of planktic foraminifera (G. ruber (white), G. sacculifer (without sac), N. dutertrei, and P. obliquiloculata) from core top sediments from the tropical Pacific, Atlantic, and western Indian Ocean. Deepwater calcite saturation values (Delta[CO3**2-]) at the sites range from 55 to -23 µmol/kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open-cell metal foams show promise as an emerging novel material for heat exchanger applications. The high surface-area-to-volume ratio suggests increased compactness and decrease in weight of heat exchanger designs. However, the metal foam structure appears conducive to condensate retention, which would degenerate heat transfer performance. This research investigates the condensate retention behavior of aluminum open-cell metal foams through the use of static dip tests and geometrical classification via X-ray Micro-Computed Tomography. Aluminum open-cell metal foam samples of 5, 10, 20, and 40 pores per inch (PPI), all having a void fraction greater than 90%, were included in this investigation. In order to model the condensate retention behavior of metal foams, a clearer understanding of the geometry was required. After exploring the ideal geometries presented in the open literature, X-ray Micro-Computed Tomography was employed to classify the actual geometry of the metal foam samples. The images obtained were analyzed using specialized software from which geometric information including strut length and pore shapes were extracted. The results discerned a high variability in ligament length, as well as features supporting the ideal geometry known as the Weaire-Phelan unit cell. The static dip tests consisted of submerging the metal foam samples in a liquid, then allowing gravity-induced drainage until steady-state was reached and the liquid remaining in the metal foam sample was measured. Three different liquids, water, ethylene glycol, and 91% isopropyl alcohol, were employed. The behaviors of untreated samples were compared to samples subjected to a Beomite surface treatment process, and no significant differences in retention behavior were discovered. The dip test results revealed two distinct regions of condensate retention, each holding approximately half of the total liquid retained by the sample. As expected, condensate retention increased as the pores sizes decreased. A model based on surface tension was developed to predict the condensate retention in the metal foam samples and verified using a regular mesh. Applying the model to both the ideal and actual metal foam geometries showed good agreement with the dip test results in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil shrinkage curve represents a decrease of total porosity or an increase of bulk density with water loss. However, our knowledge of the dynamics of pores and their geometry during soil shrinkage is scarce, partially due to lack of reliable methods for determining soil pores in relation to change in soil water. This study aimed to investigate the dynamics of macropores (>30 mu m) of paddy soils during shrinkage. Two, paddy soils, which were sampled from one paddy field cultivated for 20 years (YPF) and the other one for over 100 years (OPF), represented difference in crack geometry in the field. Macropore parameters (volume, connectivity, and orientation of pores) and soil shrinkage parameters were determined on the same undisturbed soil cores by X-ray microtomography and shrinkage curve, respectively. Macroporosity was on average four times larger in the YPF than in the OPF whereas the shrinkage capacity was lower in the YPF as compared to the OPF (0.09 vs. 0.15 COLE). Soil shrinkage increased the volume of pores by 3.7% in the YPF and by 1.6% in the OPF as well as their connectivity. The formation of macropores occurred mostly in the proportional shrinkage phase. As a result, the slope of the proportional shrinkage phase was smaller in the YPF (0.65) than in the OPF (0.89). New macropores were cracks and extended pre-existing pores in the range of 225-1215 pm size without any preferential orientation. This work provides image evidences that in paddy soils with high shrinkage capacity more macropores are generated in the soil presenting a smaller proportional shrinkage slope. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the diagnostic accuracy of full-body linear X-ray scanning (LS) in multiple trauma patients in comparison to 128-multislice computed tomography (MSCT). Materials and Methods: 106 multiple trauma patients (female: 33; male: 73) were retrospectively included in this study. All patients underwent LS of the whole body, including extremities, and MSCT covering the neck, thorax, abdomen, and pelvis. The diagnostic accuracy of LS for the detection of fractures of the truncal skeleton and pneumothoraces was evaluated in comparison to MSCT by two observers in consensus. Extremity fractures detected by LS were documented. Results: The overall sensitivity of LS was 49.2 %, the specificity was 93.3 %, the positive predictive value was 91 %, and the negative predictive value was 57.5 %. The overall sensitivity for vertebral fractures was 16.7 %, and the specificity was 100 %. The sensitivity was 48.7 % and the specificity 98.2 % for all other fractures. Pneumothoraces were detected in 12 patients by CT, but not by LS. 40 extremity fractures were detected by LS, of which 4 fractures were dislocated, and 2 were fully covered by MSCT. Conclusion: The diagnostic accuracy of LS is limited in the evaluation of acute trauma of the truncal skeleton. LS allows fast whole-body X-ray imaging, and may be valuable for detecting extremity fractures in trauma patients in addition to MSCT. Key Points: • The overall sensitivity of LS for truncal skeleton injuries in multiple-trauma patients was < 50 %.• The diagnostic reference standard MSCT is the preferred and reliable imaging modality.• LS may be valuable for quick detection of extremity fractures. Citation Format: • Jöres APW., Heverhagen JT, Bonél H et al. Diagnostic Accuracy of Full-Body Linear X-Ray Scanning in Multiple Trauma Patients in Comparison to Computed Tomography. Fortschr Röntgenstr 2016; 188: 163 - 171.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the construction and application of coded apertures to compressive X-ray tomography. Coded apertures can be made in a number of ways, each method having an impact on system background and signal contrast. Methods of constructing coded apertures for structuring X-ray illumination and scatter are compared and analyzed. Apertures can create structured X-ray bundles that investigate specific sets of object voxels. The tailored bundles of rays form a code (or pattern) and are later estimated through computational inversion. Structured illumination can be used to subsample object voxels and make inversion feasible for low dose computed tomography (CT) systems, or it can be used to reduce background in limited angle CT systems.

On the detection side, coded apertures modulate X-ray scatter signals to determine the position and radiance of scatter points. By forming object dependent projections in measurement space, coded apertures multiplex modulated scatter signals onto a detector. The multiplexed signals can be inverted with knowledge of the code pattern and system geometry. This work shows two systems capable of determining object position and type in a 2D plane, by illuminating objects with an X-ray `fan beam,' using coded apertures and compressive measurements. Scatter tomography can help identify materials in security and medicine that may be ambiguous with transmission tomography alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal thoracic kyphosis Cobb angle for T5-T12 is most commonly reported as a range of 20-40º [1]. Patients with adolescent idiopathic scoliosis (AIS) exhibit a reduced thoracic kyphosis or hypokyphosis [2] accompanying the coronal and rotary distortion components. As a result, surgical restoration of the thoracic kyphosis while maintaining lumbar lordosis and overall sagittal balance is a critical aspect of achieving good clinical outcomes in AIS patients. Previous studies report an increase in thoracic kyphosis after anterior surgical approaches [3] and a flattening of sagittal contours following posterior approaches [4]. Difficulties with measuring sagittal parameters on radiographs are avoided with reformatted sagittal CT reconstructions due to the superior endplate clarity afforded by this imaging modality and are the subject of analysis in this study.