848 resultados para Wireless Mesh Networks. IEEE 802.11s. Testbeds. Management
Resumo:
Wireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE.
Resumo:
Wireless Sensor Networks (WSNs) can be used to monitor hazardous and inaccessible areas. In these situations, the power supply (e.g. battery) of each node cannot be easily replaced. One solution to deal with the limited capacity of current power supplies is to deploy a large number of sensor nodes, since the lifetime and dependability of the network will increase through cooperation among nodes. Applications on WSN may also have other concerns, such as meeting temporal deadlines on message transmissions and maximizing the quality of information. Data fusion is a well-known technique that can be useful for the enhancement of data quality and for the maximization of WSN lifetime. In this paper, we propose an approach that allows the implementation of parallel data fusion techniques in IEEE 802.15.4 networks. One of the main advantages of the proposed approach is that it enables a trade-off between different user-defined metrics through the use of a genetic machine learning algorithm. Simulations and field experiments performed in different communication scenarios highlight significant improvements when compared with, for instance, the Gur Game approach or the implementation of conventional periodic communication techniques over IEEE 802.15.4 networks. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Faced with an imminent restructuring of the electric power system, over the past few years many countries have invested in a new paradigm known as Smart Grid. This paradigm targets optimization and automation of electric power network, using advanced information and communication technologies. Among the main communication protocols for Smart Grids we have the DNP3 protocol, which provides secure data transmission with moderate rates. The IEEE 802.15.4 is another communication protocol also widely used in Smart Grid, especially in the so-called Home Area Network (HAN). Thus, many applications of Smart Grid depends on the interaction of these two protocols. This paper proposes modeling, in the traditional network simulator NS-2, the integration of DNP3 protocol and the IEEE 802.15.4 wireless standard for low cost simulations of Smart Grid applications.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The Internet of Things is a new paradigm where smart embedded devices and systems are connected to the Internet. In this context, Wireless Sensor Networks (WSN) are becoming an important alternative for sensing and actuating critical applications like industrial automation, remote patient monitoring and domotics. The IEEE 802.15.4 protocol has been adopted as a standard for WSN and the 6LoWPAN protocol has been proposed to overcome the challenges of integrating WSN and Internet protocols. In this paper, the mechanisms of header compression and fragmentation of IPv6 datagrams proposed in the 6LoWPAN standard were evaluated through field experiments using a gateway prototype and IEEE 802.15.4 nodes.
Resumo:
Most of the proposed key management protocols for wireless sensor networks (WSNs) in the literature assume that a single base station is used and that the base station is trustworthy. However, there are applications in which multiple base stations are used and the security of the base stations must be considered. This paper investigates a key management protocol in wireless sensor networks which include multiple base stations. We consider the situations in which both the base stations and the sensor nodes can be compromised. The proposed key management protocol, mKeying, includes two schemes, a key distribution scheme, mKeyDist, supporting multiple base stations in the network, and a key revocation scheme, mKeyRev, used to efficiently remove the compromised nodes from the network. Our analyses show that the proposed protocol is efficient and secure against the compromise of the base stations and the sensor nodes.
Resumo:
Wireless Sensor Networks (WSNs) are getting wide-spread attention since they became easily accessible with their low costs. One of the key elements of WSNs is distributed sensing. When the precise location of a signal of interest is unknown across the monitored region, distributing many sensors randomly/uniformly may yield with a better representation of the monitored random process than a traditional sensor deployment. In a typical WSN application the data sensed by nodes is usually sent to one (or more) central device, denoted as sink, which collects the information and can either act as a gateway towards other networks (e.g. Internet), where data can be stored, or be processed in order to command the actuators to perform special tasks. In such a scenario, a dense sensor deployment may create bottlenecks when many nodes competing to access the channel. Even though there are mitigation methods on the channel access, concurrent (parallel) transmissions may occur. In this study, always on the scope of monitoring applications, the involved development progress of two industrial projects with dense sensor deployments (eDIANA Project funded by European Commission and Centrale Adritica Project funded by Coop Italy) and the measurement results coming from several different test-beds evoked the necessity of a mathematical analysis on concurrent transmissions. To the best of our knowledge, in the literature there is no mathematical analysis of concurrent transmission in 2.4 GHz PHY of IEEE 802.15.4. In the thesis, experience stories of eDIANA and Centrale Adriatica Projects and a mathematical analysis of concurrent transmissions starting from O-QPSK chip demodulation to the packet reception rate with several different types of theoretical demodulators, are presented. There is a very good agreement between the measurements so far in the literature and the mathematical analysis.
Resumo:
Lo scopo di questa tesi è quello di illustrare gli standard IEEE 802.22 WRAN e IEEE 802.16e Mobile WiMAX. Di questi standard verranno analizzate le caratteristiche principali, i metodi di funzoinamento ed alcuni protocolli. Nel primo capitolo viene fatta una breve spiegazione delle tecnologie wireless con un focus sullo spettro radio, sulle tecniche di modulazione dell’onda radio, sugli scenari operativi LOS, nLOS ed NLOS, sulle tecniche di duplexing e le tecniche di accesos multiplo, inoltre vengono brevente illustrate alcune delle problematiche che affliggono le trasmissioni senza fili ed infine vengono illustrate i quattro più comuni livelli di QoS. Nel secondo capitolo viene illustrato lo standard IEEE 802.22 con un focus sullo stato dell’arte della tecnologia WRAN, come si è sviluppato lo standard e per quali motivi è stato redatto, lo spettro di frequeza utilizzato e come, il funzionamento delle Cognitive Radio, i dispositivi che caratterizzano le reti WRAN e la topologia di rete utilizzata. In seguito sono spiegati nello specifico i livelli fisico e MAC e le loro caratteristiche e metodi di funzionamento. Nel terzo capitolo vengono illustrate le caratteristiche dello standard IEEE 802.16e cercando di riprendere gli stessi punti toccati nel capitolo precedente con una caratterizzazione dello standard nei suoi particolari.
Resumo:
Studio e realizzazione di una rete wireless di microcontrollori dotati di sensori, che comunicano mediante protocollo ZigBee (basato sul protocollo IEEE 802.15.4).
Resumo:
Wireless sensor networks (WSNs) consist of a large number of sensor nodes, characterized by low power constraint, limited transmission range and limited computational capabilities [1][2].The cost of these devices is constantly decreasing, making it possible to use a large number of sensor devices in a wide array of commercial, environmental, military, and healthcare fields. Some of these applications involve placing the sensors evenly spaced on a straight line for example in roads, bridges, tunnels, water catchments and water pipelines, city drainages, oil and gas pipelines etc., making a special class of these networks which we define as a Linear Wireless Network (LWN). In LWNs, data transmission happens hop by hop from the source to the destination, through a route composed of multiple relays. The peculiarity of the topology of LWNs, motivates the design of specialized protocols, taking advantage of the linearity of such networks, in order to increase reliability, communication efficiency, energy savings, network lifetime and to minimize the end-to-end delay [3]. In this thesis a novel contention based Medium Access Control (MAC) protocol called L-CSMA, specifically devised for LWNs is presented. The basic idea of L-CSMA is to assign different priorities to nodes based on their position along the line. The priority is assigned in terms of sensing duration, whereby nodes closer to the destination are assigned shorter sensing time compared to the rest of the nodes and hence higher priority. This mechanism speeds up the transmission of packets which are already in the path, making transmission flow more efficient. Using NS-3 simulator, the performance of L-CSMA in terms of packets success rate, that is, the percentage of packets that reach destination, and throughput are compared with that of IEEE 802.15.4 MAC protocol, de-facto standard for wireless sensor networks. In general, L-CSMA outperforms the IEEE 802.15.4 MAC protocol.