984 resultados para Wind velocity


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A climatology of the late summer stratospheric zonal wind turnaround phenomenon is presented, with a particular focus on the behaviour over the Meteorological Service of Canada’s balloon-launching site at Vanscoy, Saskatchewan (52°N, 107°W). Turnaround refers to the change in sign of the zonal wind velocity and occurs twice each year at stratospheric mid-latitudes, in early spring and in late summer. The late summer turnaround is of particular interest to the high-altitude ballooning community because it offers the ideal conditions for launch, but it is also an interesting dynamical phenomenon in its own right. It is studied here using both the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the United Kingdom Meteorological Office (MetO) analysis products as well as climate simulation data from the Canadian Middle Atmosphere Model (CMAM). The phenomenon and its interannual variability are documented. The predictability of the late summer turnaround over Vanscoy is investigated using both statistical averages and autocorrelation analysis. From the statistical averages, it is found that during every year since 1993, the period from 26 August to 5 September has contained appropriate launch dates. From the autocorrelation analysis, it is found that stratospheric zonal wind anomalies can persist for a month or more during most of the summer, but there is a predictability horizon at the end of the summer — just before turnaround

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from 10 yr of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. As pre-processing, an exposure correction is applied on measurements of the mean wind velocity to reduce the influence of local urban and topographic effects. The wind gust model is built as a transfer function between distribution parameters of wind and gust velocities. The aim of this procedure is to estimate the parameters of gusts at stations where only wind speed data is available. These parameters can be used to generate synthetic gusts, which can improve the accuracy of return periods at test sites with a lack of observations. The second objective is to determine return periods much longer than the nominal length of the original time series by considering extreme value statistics. Estimates for both local maximum return periods and average return periods for single historical events are provided. The comparison of maximum and average return periods shows that even storms with short average return periods may lead to local wind gusts with return periods of several decades. Despite uncertainties caused by the short length of the observational records, the method leads to consistent results, enabling a wide range of possible applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Broiler production in Brazil has turned into a very competitive activity in the late years. Constant innovation leads to higher productivity maintaining the same cost of production, which is a desirable situation. Lately one characteristic for broiler housing in Brazil has been the increase in birds density requiring the use of controlled environment through the use of fan and fogging systems in order to achieve better birds productive performance. Most Brazilian producer already uses cooling equipment however it is still unknown the right way to control the wind speed and direction towards the birds. This present research has the objective to evaluate the effect of the wind speed on the heat transfer from the birds to the environment for broilers at 27 days old. There was used 200 birds, placed in a wind tunnel measuring 1.10 m high by 1.10m wide x 10.0 m of length, and the birds density varied from 9, 16 and 20 birds/m 2. Two wind speed were simulated 340 rpm (1.0 m/s) and 250 rpm (0.3 m/s). The increase in the wind velocity related to the smaller bird densityled to a higher heat loss and to a more uniform temperature distribution in its exposed areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We extend the Miles mechanism of wind-wave generation to finite depth. A beta-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of beta is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the beta-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrodinger equation is derived and the Akhmediev, Peregrine and Kuznetsov-Ma breather solutions for weak wind inputs in finite depth h are obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN]In previous works, many authors have widely used mass consistent models for wind field simulation by the finite element method. On one hand, we have developed a 3-D mass consistent model by using tetrahedral meshes which are simultaneously adapted to complex orography and to terrain roughness length. In addition, we have included a local refinement strategy around several measurement or control points, significant contours, as for example shorelines, or numerical solution singularities. On the other hand, we have developed a 2.5-D model for simulating the wind velocity in a 3-D domain in terms of the terrain elevation, the surface temperature and the meteorological wind, which is consider as an averaged wind on vertical boundaries...

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-wind—and hence solar—oxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions ≤22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.1±0.9 ‰/amu for Li, between -0.4 and +2.8 ‰/amu for C, +1.9±0.7‰/amu for N, +1.3±0.4 ‰/amu for O, -7.5±0.4 ‰/amu for Mg, -8.9±0.6 ‰/amu for Si, and -22.0±0.7 ‰/amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, Δ m/ m. This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crop irrigation is a major consumer of energy. Only a few countries are self-sufficient in conventional non-renewable energy sources. Fortunately, there are renewable ones, such as wind, which has experienced recent developments in the area of power generation. Wind pumps can play a vital role in irrigation projects in remote farms. A methodology based on daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. For this purpose, several factors were included: three-hourly wind velocity (W3 h, m/s), flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration as a function of crop planting date. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. An example is given illustrating the use of this methodology on tomato crop (Lycopersicon esculentum Mill.) under greenhouse at Ciego de Ávila, Cuba. In this case two different W3 h series (average and low wind year), three different H values and five tomato crop planting dates were considered. The results show that the optimum period of wind-pump driven irrigation is with crop plating in November, recommending a 5 m3 volume tank for cultivated areas around 0.2 ha when using wind pumps operating at 15 m of height elevation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A methodology based on daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. For this purpose, several factors were included: three-hourly wind velocity (W3 h, m/s), flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration as a function of crop planting date. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El estudio del comportamiento de la atmósfera ha resultado de especial importancia tanto en el programa SESAR como en NextGen, en los que la gestión actual del tránsito aéreo (ATM) está experimentando una profunda transformación hacia nuevos paradigmas tanto en Europa como en los EE.UU., respectivamente, para el guiado y seguimiento de las aeronaves en la realización de rutas más eficientes y con mayor precisión. La incertidumbre es una característica fundamental de los fenómenos meteorológicos que se transfiere a la separación de las aeronaves, las trayectorias de vuelo libres de conflictos y a la planificación de vuelos. En este sentido, el viento es un factor clave en cuanto a la predicción de la futura posición de la aeronave, por lo que tener un conocimiento más profundo y preciso de campo de viento reducirá las incertidumbres del ATC. El objetivo de esta tesis es el desarrollo de una nueva técnica operativa y útil destinada a proporcionar de forma adecuada y directa el campo de viento atmosférico en tiempo real, basada en datos de a bordo de la aeronave, con el fin de mejorar la predicción de las trayectorias de las aeronaves. Para lograr este objetivo se ha realizado el siguiente trabajo. Se han descrito y analizado los diferentes sistemas de la aeronave que proporcionan las variables necesarias para obtener la velocidad del viento, así como de las capacidades que permiten la presentación de esta información para sus aplicaciones en la gestión del tráfico aéreo. Se ha explorado el uso de aeronaves como los sensores de viento en un área terminal para la estimación del viento en tiempo real con el fin de mejorar la predicción de las trayectorias de aeronaves. Se han desarrollado métodos computacionalmente eficientes para estimar las componentes horizontales de la velocidad del viento a partir de las velocidades de las aeronaves (VGS, VCAS/VTAS), la presión y datos de temperatura. Estos datos de viento se han utilizado para estimar el campo de viento en tiempo real utilizando un sistema de procesamiento de datos a través de un método de mínima varianza. Por último, se ha evaluado la exactitud de este procedimiento para que esta información sea útil para el control del tráfico aéreo. La información inicial proviene de una muestra de datos de Registradores de Datos de Vuelo (FDR) de aviones que aterrizaron en el aeropuerto Madrid-Barajas. Se dispuso de datos de ciertas aeronaves durante un periodo de más de tres meses que se emplearon para calcular el vector viento en cada punto del espacio aéreo. Se utilizó un modelo matemático basado en diferentes métodos de interpolación para obtener los vectores de viento en áreas sin datos disponibles. Se han utilizado tres escenarios concretos para validar dos métodos de interpolación: uno de dos dimensiones que trabaja con ambas componentes horizontales de forma independiente, y otro basado en el uso de una variable compleja que relaciona ambas componentes. Esos métodos se han probado en diferentes escenarios con resultados dispares. Esta metodología se ha aplicado en un prototipo de herramienta en MATLAB © para analizar automáticamente los datos de FDR y determinar el campo vectorial del viento que encuentra la aeronave al volar en el espacio aéreo en estudio. Finalmente se han obtenido las condiciones requeridas y la precisión de los resultados para este modelo. El método desarrollado podría utilizar los datos de los aviones comerciales como inputs utilizando los datos actualmente disponibles y la capacidad computacional, para proporcionárselos a los sistemas ATM donde se podría ejecutar el método propuesto. Estas velocidades del viento calculadas, o bien la velocidad respecto al suelo y la velocidad verdadera, se podrían difundir, por ejemplo, a través del sistema de direccionamiento e informe para comunicaciones de aeronaves (ACARS), mensajes de ADS-B o Modo S. Esta nueva fuente ayudaría a actualizar la información del viento suministrada en los productos aeronáuticos meteorológicos (PAM), informes meteorológicos de aeródromos (AIRMET), e información meteorológica significativa (SIGMET). ABSTRACT The study of the atmosphere behaviour is been of particular importance both in SESAR and NextGen programs, where the current air traffic management (ATM) system is undergoing a profound transformation to the new paradigms both in Europe and the USA, respectively, to guide and track aircraft more precisely on more efficient routes. Uncertainty is a fundamental characteristic of weather phenomena which is transferred to separation assurance, flight path de-confliction and flight planning applications. In this respect, the wind is a key factor regarding the prediction of the future position of the aircraft, so that having a deeper and accurate knowledge of wind field will reduce ATC uncertainties. The purpose of this thesis is to develop a new and operationally useful technique intended to provide adequate and direct real-time atmospheric winds fields based on on-board aircraft data, in order to improve aircraft trajectory prediction. In order to achieve this objective the following work has been accomplished. The different sources in the aircraft systems that provide the variables needed to derivate the wind velocity have been described and analysed, as well as the capabilities which allow presenting this information for air traffic management applications. The use of aircraft as wind sensors in a terminal area for real-time wind estimation in order to improve aircraft trajectory prediction has been explored. Computationally efficient methods have been developed to estimate horizontal wind components from aircraft velocities (VGS, VCAS/VTAS), pressure, and temperature data. These wind data were utilized to estimate a real-time wind field using a data processing approach through a minimum variance method. Finally, the accuracy of this procedure has been evaluated for this information to be useful to air traffic control. The initial information comes from a Flight Data Recorder (FDR) sample of aircraft landing in Madrid-Barajas Airport. Data available for more than three months were exploited in order to derive the wind vector field in each point of the airspace. Mathematical model based on different interpolation methods were used in order to obtain wind vectors in void areas. Three particular scenarios were employed to test two interpolation methods: a two-dimensional one that works with both horizontal components in an independent way, and also a complex variable formulation that links both components. Those methods were tested using various scenarios with dissimilar results. This methodology has been implemented in a prototype tool in MATLAB © in order to automatically analyse FDR and determine the wind vector field that aircraft encounter when flying in the studied airspace. Required conditions and accuracy of the results were derived for this model. The method developed could be fed by commercial aircraft utilizing their currently available data sources and computational capabilities, and providing them to ATM system where the proposed method could be run. Computed wind velocities, or ground and true airspeeds, would then be broadcasted, for example, via the Aircraft Communication Addressing and Reporting System (ACARS), ADS-B out messages, or Mode S. This new source would help updating the wind information furnished in meteorological aeronautical products (PAM), meteorological aerodrome reports (AIRMET), and significant meteorological information (SIGMET).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The flight dynamics and stability of a kite with a single main line flying in steady and unsteady wind conditions are discussed. A simple dynamic model with five degrees of freedom is derived with the aid of Lagrangian formulation, which explicitly avoids any constraint force in the equations of motion. The longitudinal and lateral–directional modes and stability of the steady flight under constant wind conditions are analyzed by using both numerical and analytical methods. Taking advantage of the appearance of small dimensionless parameters in the model, useful analytical formulas for stable-designed kites are found. Under nonsteady wind-velocity conditions, the equilibrium state disappears and periodic orbits occur. The kite stability and an interesting resonance phenomenon are explored with the aid of a numerical method based on Floquet theory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A study which examines the use of aircraft as wind sensors in a terminal area for real-time wind estimation in order to improve aircraft trajectory prediction is presented in this paper. We describe not only different sources in the aircraft systems that provide the variables needed to derivate the wind velocity but the capabilities which allow us to present this information for ATM Applications. Based on wind speed samples from aircraft landing at Madrid-Barajas airport, a real-time wind field will be estimated using a data processing approach through a minimum variance method. Finally the accuracy of this procedure will be evaluated for this information to be useful to Air Traffic Control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A numerical simulation of the aerodynamic behavior of high-speed trains under synthetic crosswinds at a 90º yaw angle is presented. The train geometry is the aerodynamic train model (ATM). Flow description based on numerical simulations is obtained using large eddy simulation (LES) and the commercial code ANSYSFluent V14.5. A crosswind whose averaged velocity and turbulence characteristics change with distance to the ground is imposed. Turbulent fluctuations that vary temporally and spatially are simulated with TurbSim code. The crosswind boundary condition is calculated for the distance the train runs during a simulation period. The inlet streamwise velocity boundary condition is generated using Taylor?s frozen turbulence hypothesis. The model gives a time history of the force and moments acting on the train; this includes averaged values, standard deviations and extreme values. Of particular interest are the spectra of the forces and moments, and the admittance spectra. For comparison, results obtained with LES and a uniform wind velocity fluctuating in time, and results obtained with Reynolds averaged Navier Stokes equations (RANS), and the averaged wind conditions, are also presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context. Classical supergiant X-ray binaries (SGXBs) and supergiant fast X-ray transients (SFXTs) are two types of high-mass X-ray binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors’ stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 ± 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e< 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (ν∞ = 1500 km s-1 in IGR J17544-2619 and ν∞ = 700 km s-1 in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the remediation of burial grounds at the US Department of Energy's (DOE's) Hanford Site in Washington State, the dispersion of contaminated soil particles and dust is an issue that is faced by site workers on a daily basis. This contamination problem is even more of a concern when one takes into account the semi-arid characteristics of the region where the site is located. To mitigate this problem, workers at the site use a variety of engineered methods to minimize the dispersion of contaminated soil and dust (i.e. use of water and/or suppression agents that stabilizes the soil prior to soil excavation, segregation, and removal activities). A primary contributor to the dispersion of contaminated soil and dust is wind soil erosion. The erosion process occurs when the wind speed exceeds a certain threshold value which depends on a number of factors including wind force loading, particle size, surface soil moisture, and the geometry of the soil. Thus under these circumstances, the mobility of contaminated soil and generation and dispersion of particulate matter are significantly influenced by these parameters. This dependence of soil and dust movement on threshold shear velocity, fixative dilution and/or application rates, soil moisture content, and soil geometry were studied for Hanford's sandy soil through a series of wind tunnel experiments, laboratory experiments and theoretical analysis. In addition, the behavior of plutonium (Pu) powder contamination in the soil was studied by introducing a Pu simulant (cerium oxide). The results showed that soil dispersion and PM10 concentrations decreased with increasing soil moisture. Also, it was shown that the mobility of the soil was affected by increasing wind velocity. It was demonstrated that the use of fixative products greatly decreased the amount of soil and PM10 concentrations when exposed to varying wind conditions. In addition, it was shown that geometry of the soil sample affected the velocity profile and calculation of roughness surface coefficient when comparing round and flat soil samples. Finally, threshold shear velocities were calculated for soil with flat surface and their dependency on surface soil moisture was demonstrated. A theoretical framework was developed to explain these dependencies.