869 resultados para Wind power.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of wind power as an electric energy source is profitable from an environmental point of view and improves the energetic independence of countries with little fossil fuel resources. However, the wind resource randomness poses a great challenge in the management of electric grids. This study raises the possibility of using hydrogen as a mean to damp the variability of the wind resource. Thus, it is proposed the use of all the energy produced by a typical wind farm for hydrogen generation, that will in turn be used after for suitable generation of electric energy according to the operation rules in a liberalized electric market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wavelet-based approach for large wind power ramp characterisation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this paper is the development and application of multivariate time series models for forecasting aggregated wind power production in a country or region. Nowadays, in Spain, Denmark or Germany there is an increasing penetration of this kind of renewable energy, somehow to reduce energy dependence on the exterior, but always linked with the increaseand uncertainty affecting the prices of fossil fuels. The disposal of accurate predictions of wind power generation is a crucial task both for the System Operator as well as for all the agents of the Market. However, the vast majority of works rarely onsider forecasting horizons longer than 48 hours, although they are of interest for the system planning and operation. In this paper we use Dynamic Factor Analysis, adapting and modifying it conveniently, to reach our aim: the computation of accurate forecasts for the aggregated wind power production in a country for a forecasting horizon as long as possible, particularly up to 60 days (2 months). We illustrate this methodology and the results obtained for real data in the leading country in wind power production: Denmark

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photocopy of original: Albuquerque, New Mexico :Sandia Laboratories, 1977.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"NASA technical translation NASA TT F-16204."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since wind at the earth's surface has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safe and economic use of wind energy. In this paper, we investigated a combination of numeric and probabilistic models: a Gaussian process (GP) combined with a numerical weather prediction (NWP) model was applied to wind-power forecasting up to one day ahead. First, the wind-speed data from NWP was corrected by a GP, then, as there is always a defined limit on power generated in a wind turbine due to the turbine controlling strategy, wind power forecasts were realized by modeling the relationship between the corrected wind speed and power output using a censored GP. To validate the proposed approach, three real-world datasets were used for model training and testing. The empirical results were compared with several classical wind forecast models, and based on the mean absolute error (MAE), the proposed model provides around 9% to 14% improvement in forecasting accuracy compared to an artificial neural network (ANN) model, and nearly 17% improvement on a third dataset which is from a newly-built wind farm for which there is a limited amount of training data. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since wind has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safety and economics of wind energy utilization. In this paper, we investigate a combination of numeric and probabilistic models: one-day-ahead wind power forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical Weather Prediction (NWP) model. Firstly the wind speed data from NWP was corrected by a GP. Then, as there is always a defined limit on power generated in a wind turbine due the turbine controlling strategy, a Censored GP was used to model the relationship between the corrected wind speed and power output. To validate the proposed approach, two real world datasets were used for model construction and testing. The simulation results were compared with the persistence method and Artificial Neural Networks (ANNs); the proposed model achieves about 11% improvement in forecasting accuracy (Mean Absolute Error) compared to the ANN model on one dataset, and nearly 5% improvement on another.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PMSG-based wind power generation system protection is presented in this paper. For large-scale systems, a voltagesource converter rectifier is included. Protection circuits for this topology are studied with simulation results for cable permanent fault conditions. These electrical protection methods are all in terms of dumping redundant energy resulting from disrupted path of power delivery. Pitch control of large-scale wind turbines are considered for effectively reducing rotor shaft overspeed. Detailed analysis and calculation of damping power and resistances are presented. Simulation results including fault overcurrent, DC-link overvoltage and wind turbine overspeed are shown to illustrate the system responses under different protection schemes to compare their application and effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-power and high-voltage gain dc-dc converters are key to high-voltage direct current (HVDC) power transmission for offshore wind power. This paper presents an isolated ultra-high step-up dc-dc converter in matrix transformer configuration. A flyback-forward converter is adopted as the power cell and the secondary side matrix connection is introduced to increase the power level and to improve fault tolerance. Because of the modular structure of the converter, the stress on the switching devices is decreased and so is the transformer size. The proposed topology can be operated in column interleaved modes, row interleaved modes, and hybrid working modes in order to deal with the varying energy from the wind farm. Furthermore, fault-tolerant operation is also realized in several fault scenarios. A 400-W dc-dc converter with four cells is developed and experimentally tested to validate the proposed technique, which can be applied to high-power high-voltage dc power transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A DSP implementation of Space Vector PWM (SVPWM) using constant V/Hz control for the open winding doubly-fed generator is proposed. This control of SVPWM modulation mode and open winding structure combination has the high voltage utilization ratio, greatly improves the control precision of the system, and reduces the stator winding output current distortion rate, though the complexity of the system is increased. This paper describes the basic principle of SVPWM and discusses the particularity of SVPWM waveform generated by hybrid vector under the condition of open winding. This method is applied to a state of doubly-fed wind power generator. The experimental verification shows that this control method can make the output voltage amplitude of the doubly-fed induction generator be 380V and the frequency be 50Hz by using of TMS32028335 chip based on constant V/Hz control of symmetric SVPWM modulation wave.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new open-winding control strategy is proposed for a brushless doubly-fed reluctance generator (BDFRG) applicable for wind turbines. The BDFRG control winding is fed via a dual two-level three-phase converter using a single dc bus. Direct power control based on maximum power point tracking with common mode voltage elimination is designed, which not only the active and reactive power is decoupled, but the reliability and redundancy are all improved greatly by increasing the switching modes of operation, while DC-link voltage and rating of power devices decreased by 50% comparing to the traditional three-level converter systems. Consequently its effectiveness is evaluated by simulation tests based on a 42-kW prototype generator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel open-winding brushless doubly-fed generator (BDFG) system with two two-level bidirectional converters is proposed. This topology is equivalent to a three-level bidirectional converter connected to the typical BDFG, but solves the unbalanced-voltage-division problem of DC capacitor in the three-level converter, and has lower converter capacity, more flexible control mode, and better fault-tolerant ability. The direct power control (DPC) based on the twelve sections is adopted to implement the power tracking of the open-winding BDFG system, which is compared with the typical BDFG DPC system based on the six and twelve sections to verify the advantages of the proposed scheme.