99 resultados para Wildfires


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Change in ecosystem disturbance regimes from human land-use poses a worldwide problem for management of rare species. Two important types of disturbance influencing the persistence of species in Australian ecosystems are habitat fragmentation and fire. In this study, seed dispersal and the germination ecology of Pomaderris vacciniifolia-a critically endangered, rare endemic Australian shrub-were examined to identify likely influences of fire and fragmentation on the decline of populations. The response of seed germination to simulated effects of wildfire and canopy openings was investigated, as was the unaided dispersal capability of seeds from parent plants. A significant increase in germination rate was observed following 100°C heat treatment to seeds, while smoke and light exposure had little influence. Seed imbibition was strongly influenced by heat treatment. The findings indicate a likely positive post-fire germination response, with implications for recruitment success determined by moisture availability following fire. Unaided seed dispersal was limited, which partly explains the apparent decline of populations. Understanding disturbance requirements for threatened species, and subsequent management of landscapes for disturbance, will aid conservation of rare species throughout the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Extreme climatic events and large wildfires are predicted to increase as the world's climate warms. Understanding how they shape species' distributions will be critical for conserving biodiversity. We used a 7-year dataset of mammals collected during and after south-east Australia's Millennium Drought to assess the roles of fire history, climatic extremes and their interactions in shaping mammal distributions. Location: Grampians National Park, south-eastern Australia.

Methods: We surveyed mammals at 36 sites along a ~50-year post-fire chronosequence in each of the 7 years. We modelled ten mammal species in relation to fire history, productivity and recent rainfall. Next, we examined the consistency of species' fire response curves across each of three climatic phases relating to the Millennium Drought. Finally, we identified the optimal distribution of fire ages for small and medium-sized mammal conservation in each of the three climatic phases.

Results:
The majority of species were influenced by fire history, and all native species were negatively associated with recently burned vegetation. Seven of ten species responded positively to the end of the Millennium Drought, but six of these declined quickly thereafter. Species' responses to fire history differed depending on the climatic conditions. However, the optimal distribution of fire-age classes consistently emphasized the importance of older age classes, regardless of climatic phase. This distribution is in stark contrast to the current distribution of fire ages across the study region.

Main conclusions:
Mammals in the study region face an uncertain future. The negative impact of drought, the short-lived nature of post-drought recovery and, now, the possibility of a new drought beginning forewarn of further declines. The stark contrast between the optimal and current fire-age distributions means that reducing the incidence of further fires is critical to enhance the capacity of native mammal communities to weather an increasingly turbulent climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past decade, major landscape wildfires (or ‘bushfires’ in Australia) in fire-prone countries have illustrated the seriousness of this global environmental problem. This natural hazard presents a complex mesh of dynamic factors for those seeking to reduce or manage its costs, as ignitions, hazard behaviour, and the reactions of different human and ecological communities during and after hazard events are all extremely uncertain. But while those at risk of wildfire have been subject to significant research, the social dimensions of its management, including the role of science, have received little attention. This paper reports on a case study of the Barwon-Otway area of Victoria in Australia, a high wildfire risk area that has recently been a pilot site for a new risk mitigation strategy utilising the wildfire simulation model PHOENIX RapidFire. Against simple equations between ‘more science’ and ‘less uncertainty,’ this paper presents results from interviews and a workshop with practitioners to investigate how scientific research interacts with and informs both wildfire policy and practice. We suggest that attending to cultural and social specificities of the application of any technical innovation—such as next generation modelling—raises questions for future research about the roles of narrative, performance, and other knowledges in the sedimentation of science.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les tourbières ont contribué à refroidir le climat terrestre pendant l’Holocène en accumulant un réservoir de carbone important. Dans la forêt boréale canadienne, les sols gelés en permanence (pergélisols) sont répandus et ceux-ci sont principalement localisés dans les tourbières où ils forment des plateaux surélevés. Le dégel du pergélisol, causé entre autres par le réchauffement atmosphérique ou d’autres perturbations, provoque l’effondrement des plateaux et la saturation en eau du sol ce qui modifie entre autres le couvert végétal et le cycle du carbone. Les modélisations suggèrent que les latitudes nordiques seront les plus affectées par le réchauffement climatique alors qu’on y observe déjà un recul du couvert du pergélisol. Il est primordial de comprendre comment le dégel du pergélisol affecte la fonction de puits de carbone des tourbières puisque des rétroactions sur le climat sont possibles si une grande quantité de gaz à effet de serre est émise ou séquestrée. J’utilise une chronoséquence représentant le temps depuis le dégel d’un plateau de pergélisol des Territoires du Nord-Ouest pour comprendre les facteurs influençant l’aggradation et la dégradation du pergélisol dans les tourbières et évaluer l’effet du dégel sur l’accumulation de carbone et la préservation du carbone déjà accumulé. Les taux d’accumulation de carbone associés à la présence de pergélisol dans le passé et au présent sont lents, et la tourbe est moins décomposée dans les secteurs ayant été affectés plus longtemps par le pergélisol. En somme, le pergélisol réduit l’accumulation de carbone en surface mais permet une meilleure préservation du carbone déjà accumulé.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropospheric ozone (O3) and carbon monoxide (CO) pollution in the Northern Hemisphere is commonly thought to be of anthropogenic origin. While this is true in most cases, copious quantities of pollutants are emitted by fires in boreal regions, and the impact of these fires on CO has been shown to significantly exceed the impact of urban and industrial sources during large fire years. The impact of boreal fires on ozone is still poorly quantified, and large uncertainties exist in the estimates of the fire-released nitrogen oxides (NO x ), a critical factor in ozone production. As boreal fire activity is predicted to increase in the future due to its strong dependence on weather conditions, it is necessary to understand how these fires affect atmospheric composition. To determine the scale of boreal fire impacts on ozone and its precursors, this work combined statistical analysis of ground-based measurements downwind of fires, satellite data analysis, transport modeling and the results of chemical model simulations. The first part of this work focused on determining boreal fire impact on ozone levels downwind of fires, using analysis of observations in several-days-old fire plumes intercepted at the Pico Mountain station (Azores). The results of this study revealed that fires significantly increase midlatitude summertime ozone background during high fire years, implying that predicted future increases in boreal wildfires may affect ozone levels over large regions in the Northern Hemisphere. To improve current estimates of NOx emissions from boreal fires, we further analyzed ΔNOy /ΔCO enhancement ratios in the observed fire plumes together with transport modeling of fire emission estimates. The results of this analysis revealed the presence of a considerable seasonal trend in the fire NOx /CO emission ratio due to the late-summer changes in burning properties. This finding implies that the constant NOx /CO emission ratio currently used in atmospheric modeling is unrealistic, and is likely to introduce a significant bias in the estimated ozone production. Finally, satellite observations were used to determine the impact of fires on atmospheric burdens of nitrogen dioxide (NO2 ) and formaldehyde (HCHO) in the North American boreal region. This analysis demonstrated that fires dominated the HCHO burden over the fires and in plumes up to two days old. This finding provides insights into the magnitude of secondary HCHO production and further enhances scientific understanding of the atmospheric impacts of boreal fires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les tourbières ont contribué à refroidir le climat terrestre pendant l’Holocène en accumulant un réservoir de carbone important. Dans la forêt boréale canadienne, les sols gelés en permanence (pergélisols) sont répandus et ceux-ci sont principalement localisés dans les tourbières où ils forment des plateaux surélevés. Le dégel du pergélisol, causé entre autres par le réchauffement atmosphérique ou d’autres perturbations, provoque l’effondrement des plateaux et la saturation en eau du sol ce qui modifie entre autres le couvert végétal et le cycle du carbone. Les modélisations suggèrent que les latitudes nordiques seront les plus affectées par le réchauffement climatique alors qu’on y observe déjà un recul du couvert du pergélisol. Il est primordial de comprendre comment le dégel du pergélisol affecte la fonction de puits de carbone des tourbières puisque des rétroactions sur le climat sont possibles si une grande quantité de gaz à effet de serre est émise ou séquestrée. J’utilise une chronoséquence représentant le temps depuis le dégel d’un plateau de pergélisol des Territoires du Nord-Ouest pour comprendre les facteurs influençant l’aggradation et la dégradation du pergélisol dans les tourbières et évaluer l’effet du dégel sur l’accumulation de carbone et la préservation du carbone déjà accumulé. Les taux d’accumulation de carbone associés à la présence de pergélisol dans le passé et au présent sont lents, et la tourbe est moins décomposée dans les secteurs ayant été affectés plus longtemps par le pergélisol. En somme, le pergélisol réduit l’accumulation de carbone en surface mais permet une meilleure préservation du carbone déjà accumulé.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter looks primarily at the bushfires (sometimes called ‘wildfires’ or ‘forest fires’) in theCatalonian province of Spain and the resulting lessons learnt in managing the communicationduring these crises. In doing so, it also reflects, where applicable, on the lessons on the catastrophicfires in the state of Victoria in Australia in 2009. These two populous regions represent some of themost fire prone areas of the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time since last fire and fire frequency are strong determinants of plant community composition in fire-prone landscapes. Our study aimed to establish the influence of time since last fire and fire frequency on plant community composition and diversity of a south-west Australian semi-arid shrubland. We employed a space-for-time approach using four fire age classes: 'young', 8-15years since last fire; 'medium', 16-34; 'old', 35-50; and 'very old', 51-100; and three fire frequency classes: burnt once, twice and three times within the last 50years. Species diversity was compared using one-way ANOVA and species composition using PERMANOVA. Soil and climatic variables were included as covariables to partition underlying environmental drivers. We found that time since last fire influenced species richness, diversity and composition. Specifically, we recorded a late successional transition from woody seeders to long-lived, arid-zone, resprouting shrub species. Fire frequency did not influence species richness and diversity but did influence species composition via a reduction in cover of longer-lived resprouter species - presumably because of a reduced ability to replenish epicormic buds and/or sufficient starch stores. The distinct floristic composition of old and very old habitat, and the vulnerability of these areas to wildfires, indicate that these areas are ecologically important and management should seek to preserve them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Landscape-level wildfires have a major role in structuring faunal assemblages, particularly in fire-prone landscapes. These effects are mediated by changes to vegetation structure and composition that directly influence the availability of shelter, feeding and breeding resources. We investigated the response of a semi-arid shrubland bird community in Western Australia to the prevailing fire regime by examining the abundance, diversity and guild structure in relation to time since fire. We also examined vegetation structural attributes in relation to time since fire. We surveyed 32 sites ranging in age from 12 to 84 years since last fire. A total of 845 birds from 40 species were recorded. Vegetation structure varied with fire history with old and very old sites characterised by less bare ground, more leaf litter cover and greater canopy cover. Bird community composition varied with time since fire, driven by increased bird species richness and abundance of insectivores, granivores/frugivores, golden whistlers, grey shrike-thrush and red-capped robins with time since fire. Frequent, intense landscape-scale fires transform the landscape into homogeneous young shrublands, which may render vegetation unsuitable for several species and guilds.